130 research outputs found

    Performance of ECG-based seizure detection algorithms strongly depends on training and test conditions

    Get PDF
    Objective To identify non-EEG-based signals and algorithms for detection of motor and non-motor seizures in people lying in bed during video-EEG (VEEG) monitoring and to test whether these algorithms work in freely moving people during mobile EEG recordings. Methods Data of three groups of adult people with epilepsy (PwE) were analyzed. Group 1 underwent VEEG with additional devices (accelerometry, ECG, electrodermal activity); group 2 underwent VEEG; and group 3 underwent mobile EEG recordings both including one-lead ECG. All seizure types were analyzed. Feature extraction and machine-learning techniques were applied to develop seizure detection algorithms. Performance was expressed as sensitivity, precision, F1_{1} score, and false positives per 24 hours. Results The algorithms were developed in group 1 (35 PwE, 33 seizures) and achieved best results (F1_{1} score 56%, sensitivity 67%, precision 45%, false positives 0.7/24 hours) when ECG features alone were used, with no improvement by including accelerometry and electrodermal activity. In group 2 (97 PwE, 255 seizures), this ECG-based algorithm largely achieved the same performance (F1_{1} score 51%, sensitivity 39%, precision 73%, false positives 0.4/24 hours). In group 3 (30 PwE, 51 seizures), the same ECG-based algorithm failed to meet up with the performance in groups 1 and 2 (F1_{1} score 27%, sensitivity 31%, precision 23%, false positives 1.2/24 hours). ECG-based algorithms were also separately trained on data of groups 2 and 3 and tested on the data of the other groups, yielding maximal F1 scores between 8% and 26%. Significance Our results suggest that algorithms based on ECG features alone can provide clinically meaningful performance for automatic detection of all seizure types. Our study also underscores that the circumstances under which such algorithms were developed, and the selection of the training and test data sets need to be considered and limit the application of such systems to unseen patient groups behaving in different conditions

    Blood Pressure in Seizures and Epilepsy

    Get PDF
    In this narrative review, we summarize the current knowledge of neurally mediated blood pressure (BP) control and discuss how recently described epilepsy- and seizure-related BP alterations may contribute to premature mortality and sudden unexpected death in epilepsy (SUDEP). Although people with epilepsy display disturbed interictal autonomic function with a shift toward predominant sympathetic activity, prevalence of arterial hypertension is similar in people with and without epilepsy. BP is transiently increased in association with most types of epileptic seizures but may also decrease in some, illustrating that seizure activity can cause both a decrease and increase of BP, probably because of stimulation or inhibition of distinct central autonomic function by epileptic activity that propagates into different neuronal networks of the central autonomic nervous system. The principal regulatory neural loop for short-term BP control is termed baroreflex, mainly involving peripheral sensors and brain stem nuclei. The baroreflex sensitivity (BRS, expressed as change of interbeat interval per change in BP) is intact after focal seizures, whereas BRS is markedly impaired in the early postictal period following generalized convulsive seizures (GCS), possibly due to metabolically mediated muscular hyperemia in skeletal muscles, a massive release of catecholamines and compromised brain stem function. Whilst most SUDEP cases are probably caused by a cardiorespiratory failure during the early postictal period following GCS, a profoundly disturbed BRS may allow a life-threatening drop of systemic BP in the aftermath of GCS, as recently reported in a patient as a plausible cause of SUDEP in a few patients

    Review of European guidelines on palliative sedation: a foundation for the updating of the European Association for Palliative Care framework

    Get PDF
    in 2009, the European Association for Palliative Care (EAPC) developed a framework on palliative sedation, acknowledging this practice as an important and ethically acceptable intervention of last resort for terminally ill patients experiencing refractory symptoms. Before and after that, other guidelines on palliative sedation have been developed in Europe with variations in terminology and concepts. As part of the Palliative Sedation project (Horizon 2020 Funding No. 825700), a revision of the EAPC framework is planned. The aim of this article is to analyze the most frequently used palliative sedation guidelines as reported by experts from eight European countries to inform the discussion of the new framework. The three most reported documents per country were identified through an online survey among 124 clinical experts in December 2019. Those meeting guideline criteria were selected. Their content was assessed against the EAPC framework on palliative sedation. The quality of their methodology was evaluated with the Appraisal Guideline Research and Evaluation (AGREE) II instrument. Nine guidelines were included. All recognize palliative sedation as a last-resort treatment for refractory symptoms, but the criterion of refractoriness remains a matter of debate. Most guidelines recognize psychological or existential distress as (part of) an indication and some make specific recommendations for such cases. All agree that the assessment should be multiprofessional, but they diverge on the expertise required by the attending physician/team. Regarding decisions on hydration and nutrition, it is proposed that these should be independent of those for palliative sedation, but there is no clear consensus on the decision-making process. Several weaknesses were highlighted, particularly in areas of rigor of development and applicability. The identified points of debate and methodological weaknesses should be considered in any update or revision of the guidelines analyzed to improve the quality of their content and the applicability of their recommendations

    Timing of syncope in ictal asystole as a guide when considering pacemaker implantation

    Get PDF
    Introduction In patients with ictal asystole (IA) both cardioinhibition and vasodepression may contribute to syncopal loss of consciousness. We investigated the temporal relationship between onset of asystole and development of syncope in IA, to estimate the frequency with which pacemaker therapy, by preventing severe bradycardia, may diminish syncope risk. Methods In this retrospective cohort study, we searched video-EEG databases for individuals with focal seizures and IA (asystole >= 3 s preceded by heart rate deceleration) and assessed the durations of asystole and syncope and their temporal relationship. Syncope was evaluated using both video observations (loss of muscle tone) and EEG (generalized slowing/flattening). We assumed that asystole starting 3 s. Thus, in only two instances was vasodepression rather than cardioinhibition the dominant presumptive syncope triggering mechanism. Conclusions In IA, cardioinhibition played an important role in most seizure-induced syncopal events, thereby favoring the potential utility of pacemaker implantation in patients with difficult to suppress IA.Paroxysmal Cerebral Disorder

    EEG in fitness to drive evaluations in people with epilepsy - Considerable variations across Europe

    Get PDF
    PURPOSE: Epilepsy patients consider driving issues to be one of their most serious concerns. Ideally, decisions regarding fitness to drive should be based upon thorough evaluations by specialists in epilepsy care. In 2009, an EU directive was published aiming to harmonize evaluation practices within European countries, but, despite these recommendations, whether all epileptologists use the same criteria is unclear. We therefore conducted this study to investigate routine practices on how epileptologists at European epilepsy centers evaluate fitness to drive. METHODS: A questionnaire was sent to 63 contact persons identified through the European Epi-Care and the E-pilepsy network. The questionnaire addressed how fitness-to-drive evaluations were conducted, the involvement of different professionals, the use and interpretation of EEG, and opinions on existing regulations and guidelines. RESULTS: The questionnaire was completed by 35 participants (56 % response rate). Results showed considerable variation regarding test routines and the emphasis placed on the occurrence and extent of epileptiform discharges revealed by EEG. 82 % of the responders agreed that there was a need for more research on how to better evaluate fitness-to-drive in people with epilepsy, and 89 % agreed that regulations on fitness to drive evaluations should be internationally coordinated. CONCLUSION: Our survey showed considerable variations among European epileptologists regarding use of EEG and how findings of EEG pathology should be assessed in fitness-to-drive evaluations. There is a clear need for more research on this issue and international guidelines on how such evaluations should be carried out would be of value

    The expression of hyperpolarization activated cyclic nucleotide gated (HCN) channels in the rat ovary are dependent on the type of cell and the reproductive age of the animal: a laboratory investigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aim of this study was to test the hypothesis that levels of hyperpolarization activated cyclic nucleotide gated channels 1 to 4 (HCN1-4) are linked to the reproductive age of the ovary.</p> <p>Methods</p> <p>Young, adult, and reproductively aged ovaries were collected from Sprague-Dawley rats. RT-PCR and western blot analysis of ovaries was performed to investigate the presence of mRNA and total protein for HCN1-4. Immunohistochemistry with semiquantitative H score analysis was performed using whole ovarian histologic sections.</p> <p>Results</p> <p>RT-PCR analysis showed the presence of mRNA for HCN1-4. Western blot analysis revealed HCN1-3 proteins in all ages of ovarian tissues. Immunohistochemistry with H score analysis demonstrated distinct age-related changes in patterns of HCN1-3 in the oocytes, granulosa cells, theca cells, and corpora lutea. HCN4 was present only in the oocytes, with declining levels during the reproduction lifespan.</p> <p>Conclusion</p> <p>The evidence presented here demonstrates cell-type and developmental age patterns of HCN1-4 channel expression in rat ovaries. Based on this, we hypothesize that HCN channels have functional significance in rat ovaries and may have changing roles in reproductive aging.</p

    A survey of the European Reference Network EpiCARE on clinical practice for selected rare epilepsies

    Get PDF
    Objective: Clinical care of rare and complex epilepsies is challenging, because evidence‐based treatment guidelines are scarce, the experience of many physicians is limited, and interdisciplinary treatment of comorbidities is required. The pathomechanisms of rare epilepsies are, however, increasingly understood, which potentially fosters novel targeted therapies. The objectives of our survey were to obtain an overview of the clinical practice in European tertiary epilepsy centers treating patients with 5 arbitrarily selected rare epilepsies and to get an estimate of potentially available patients for future studies. / Methods: Members of the European Reference Network for rare and complex epilepsies (EpiCARE) were invited to participate in a web‐based survey on clinical practice of patients with Dravet syndrome, tuberous sclerosis complex (TSC), autoimmune encephalitis, and progressive myoclonic epilepsies including Unverricht Lundborg and Unverricht‐like diseases. A consensus‐based questionnaire was generated for each disease. / Results: Twenty‐six of 30 invited epilepsy centers participated. Cohorts were present in most responding centers for TSC (87%), Dravet syndrome (85%), and autoimmune encephalitis (71%). Patients with TSC and Dravet syndrome represented the largest cohorts in these centers. The antiseizure drug treatments were rather consistent across the centers especially with regard to Dravet syndrome, infantile spasms in TSC, and Unverricht Lundborg / Unverricht‐like disease. Available, widely used targeted therapies included everolimus in TSC and immunosuppressive therapies in autoimmune encephalitis. Screening for comorbidities was routinely done, but specific treatment protocols were lacking in most centers. / Significance: The survey summarizes the current clinical practice for selected rare epilepsies in tertiary European epilepsy centers and demonstrates consistency as well as heterogeneity in the treatment, underscoring the need for controlled trials and recommendations. The survey also provides estimates for potential participants of clinical trials recruited via EpiCARE, emphasizing the great potential of Reference Networks for future studies to evaluate new targeted therapies and to identify novel biomarkers

    A survey of the European Reference Network EpiCARE on clinical practice for selected rare epilepsies

    Get PDF
    Objective: Clinical care of rare and complex epilepsies is challenging, because evidence-based treatment guidelines are scarce, the experience of many physicians is limited, and interdisciplinary treatment of comorbidities is required. The pathomechanisms of rare epilepsies are, however, increasingly understood, which potentially fosters novel targeted therapies. The objectives of our survey were to obtain an overview of the clinical practice in European tertiary epilepsy centers treating patients with 5 arbitrarily selected rare epilepsies and to get an estimate of potentially available patients for future studies. Methods: Members of the European Reference Network for rare and complex epilepsies (EpiCARE) were invited to participate in a web-based survey on clinical practice of patients with Dravet syndrome, tuberous sclerosis complex (TSC), autoimmune encephalitis, and progressive myoclonic epilepsies including Unverricht Lundborg and Unverricht-like diseases. A consensus-based questionnaire was generated for each disease. Results: Twenty-six of 30 invited epilepsy centers participated. Cohorts were present in most responding centers for TSC (87%), Dravet syndrome (85%), and autoimmune encephalitis (71%). Patients with TSC and Dravet syndrome represented the largest cohorts in these centers. The antiseizure drug treatments were rather consistent across the centers especially with regard to Dravet syndrome, infantile spasms in TSC, and Unverricht Lundborg / Unverricht-like disease. Available, widely used targeted therapies included everolimus in TSC and immunosuppressive therapies in autoimmune encephalitis. Screening for comorbidities was routinely done, but specific treatment protocols were lacking in most centers. Significance: The survey summarizes the current clinical practice for selected rare epilepsies in tertiary European epilepsy centers and demonstrates consistency as well as heterogeneity in the treatment, underscoring the need for controlled trials and recommendations. The survey also provides estimates for potential participants of clinical trials recruited via EpiCARE, emphasizing the great potential of Reference Networks for future studies to evaluate new targeted therapies and to identify novel biomarkers

    Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells

    Get PDF
    Significant inroads have been made to understand cerebellar cortical processing but neural coding at the output stage of the cerebellum in the deep cerebellar nuclei (DCN) remains poorly understood. The DCN are unlikely to just present a relay nucleus because Purkinje cell inhibition has to be turned into an excitatory output signal, and DCN neurons exhibit complex intrinsic properties. In particular, DCN neurons exhibit a range of rebound spiking properties following hyperpolarizing current injection, raising the question how this could contribute to signal processing in behaving animals. Computer modeling presents an ideal tool to investigate how intrinsic voltage-gated conductances in DCN neurons could generate the heterogeneous firing behavior observed, and what input conditions could result in rebound responses. To enable such an investigation we built a compartmental DCN neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than −70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum
    corecore