1,654 research outputs found
A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe
Environmental change alters ecosystem functioning and may put the provision of services to human at risk. This paper presents a spatially explicit and quantitative assessment of the corresponding vulnerability for Europe, using a new framework designed to answer multidisciplinary policy relevant questions about the vulnerability of the human-environment system to global change. Scenarios were constructed for a range of possible changes in socio-economic trends, land uses and climate. These scenarios were used as inputs in a range of ecosystem models in order to assess the response of ecosystem function as well as the changes in the services they provide. The framework was used to relate the impacts of changing ecosystem service provision for four sectors in relation to each other, and to combine them with a simple, but generic index for societal adaptive capacity. By allowing analysis of different sectors, regions and development pathways, the vulnerability assessment provides a basis for discussion between stakeholders and policymakers about sustainable management of Europe¿s natural resource
Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array
This work confirms that not only surface plasmons but many other kinds of
electromagnetic eigenmodes should be considered in explaining the values of the
transmittivity through a slab bearing a two-dimensional periodic corrugation.
Specifically, the role of Brewster-Zennek modes appearing in metallic films
exhibiting regions of weak positive dielectric constant. It is proposed that
these modes play a significant role in the light transmission in a thin
chromium film perforated with normal cylindrical holes, for appropriate lattice
parameters.Comment: 5 pages, 4 figures. Published versio
Potential Energy Surface for H_2 Dissociation over Pd(100)
The potential energy surface (PES) of dissociative adsorption of H_2 on
Pd(100) is investigated using density functional theory and the full-potential
linear augmented plane wave (FP-LAPW) method. Several dissociation pathways are
identified which have a vanishing energy barrier. A pronounced dependence of
the potential energy on ``cartwheel'' rotations of the molecular axis is found.
The calculated PES shows no indication of the presence of a precursor state in
front of the surface. Both results indicate that steering effects determine the
observed decrease of the sticking coefficient at low energies of the H_2
molecules. We show that the topology of the PES is related to the dependence of
the covalent H(s)-Pd(d) interactions on the orientation of the H_2 molecule.Comment: RevTeX, 8 pages, 5 figures in uufiles forma
Phase transition in a static granular system
We find that a column of glass beads exhibits a well-defined transition
between two phases that differ in their resistance to shear. Pulses of
fluidization are used to prepare static states with well-defined particle
volume fractions in the range 0.57-0.63. The resistance to shear is
determined by slowly inserting a rod into the column of beads. The transition
occurs at for a range of speeds of the rod.Comment: 4 pages, 4 figures. The paper is significantly extended, including
new dat
On the existence of stationary states during granular compaction
When submitted to gentle mechanical taps a granular packing slowly compacts
until it reaches a stationary state that depends on the tap characteristics.
The properties of such stationary states are experimentally investigated. The
influence of the initial state, taps properties and tapping protocol are
studied. The compactivity of the packings is determinated. Our results strongly
support the idea that the stationary states are genuine thermodynamic states.Comment: to be published in EPJE. The original publication will be available
at www.europhysj.or
Correlation between Voronoi volumes in disc packings
We measure the two-point correlation of free Voronoi volumes in binary disc
packings, where the packing fraction ranges from 0.8175 to
0.8380. We observe short-ranged correlations over the whole range of and anti-correlations for . The spatial extent of
the anti-correlation increases with while the position of the
maximum of the anti-correlation and the extent of the positive correlation
shrink with . We conjecture that the onset of anti-correlation
corresponds to dilatancy onset in this system
The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model
The Finite Element Sea Ice-Ocean Model (FESOM) is the first global
ocean general circulation model based on unstructured-mesh methods
that has been developed for the purpose of climate research. The
advantage of unstructured-mesh models is their flexible
multi-resolution modelling functionality. In this study, an overview
of the main features of FESOM will be given; based on sensitivity
experiments a number of specific parameter choices will be
explained; and directions of future developments will be outlined.
It is argued that FESOM is sufficiently mature to explore the
benefits of multi-resolution climate modelling and that
its applications will provide information useful for the
advancement of climate modelling on unstructured meshes
The role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials
We assert that the physics underlying the extraordinary light transmission
(reflection) in nanostructured materials can be understood from rather general
principles based on the formal scattering theory developed in quantum
mechanics. The Maxwell equations in passive (dispersive and absorptive) linear
media are written in the form of the Schr\"{o}dinger equation to which the
quantum mechanical resonant scattering theory (the Lippmann-Schwinger
formalism) is applied. It is demonstrated that the existence of long-lived
quasistationary eigenstates of the effective Hamiltonian for the Maxwell theory
naturally explains the extraordinary transmission properties observed in
various nanostructured materials. Such states correspond to quasistationary
electromagnetic modes trapped in the scattering structure. Our general approach
is also illustrated with an example of the zero-order transmission of the
TE-polarized light through a metal-dielectric grating structure. Here a direct
on-the-grid solution of the time-dependent Maxwell equations demonstrates the
significance of resonances (or trapped modes) for extraordinary light
transmissioComment: 14 pages, 6 figures; Discussion in Section 4 expanded; typos
corrected; a reference added; Figure 4 revise
Experimental investigation of the initial regime in fingering electrodeposition: dispersion relation and velocity measurements
Recently a fingering morphology, resembling the hydrodynamic Saffman-Taylor
instability, was identified in the quasi-two-dimensional electrodeposition of
copper. We present here measurements of the dispersion relation of the growing
front. The instability is accompanied by gravity-driven convection rolls at the
electrodes, which are examined using particle image velocimetry. While at the
anode the theory presented by Chazalviel et al. describes the convection roll,
the flow field at the cathode is more complicated because of the growing
deposit. In particular, the analysis of the orientation of the velocity vectors
reveals some lag of the development of the convection roll compared to the
finger envelope.Comment: 11 pages, 15 figures, REVTEX 4; reference adde
Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates
We present a soft x-ray angle-resolved photoemission spectroscopy study of
the overdoped high-temperature superconductors LaSrCuO and
LaEuSrCuO. In-plane and out-of-plane components of
the Fermi surface are mapped by varying the photoemission angle and the
incident photon energy. No dispersion is observed along the nodal
direction, whereas a significant antinodal dispersion is identified.
Based on a tight-binding parametrization, we discuss the implications for the
density of states near the van-Hove singularity. Our results suggest that the
large electronic specific heat found in overdoped LaSrCuO can
not be assigned to the van-Hove singularity alone. We therefore propose quantum
criticality induced by a collapsing pseudogap phase as a plausible explanation
for observed enhancement of electronic specific heat
- …