263 research outputs found

    REVISITING THE ROLE OF OBSERVATION SESSION DURATION ON PRECISE POINT POSITIONING ACCURACY USING GIPSY/OASIS II SOFTWARE

    Get PDF
    The accuracy of GPS precise point positioning (PPP) was previously modelled as a function of the observing session duration T. The NASA, JPL’s software GIPSY OASIS II (GOA-II) along with the legacy products was used to process the GPS data. The original accuracy model is not applicable anymore because JPL started releasing its products using new modelling and analysis strategies as of August 2007, and the legacy products are no longer available. The developments mainly comprise the new orbit and clock determination strategy, second order ionosphere modelling, and single station ambiguity resolution. Previously, the PPP accuracy was studied using v 4.0 of the GOA-II. The accuracy model showed coarser results compared to that of the relative positioning. Here, we processed the data of the International GNSS Service (IGS) stations to refine the accuracy of GOA-II PPP from version 6.3. Considering the above changes we refined the accuracy of PPP. First we modified the previous model used for the accuracy assessment. Then we tested out this model using straightforward polynomial and logarithmic models. The tests indicate the previous formulation still satisfactorily models the accuracy using refined coefficient values Sn = 7.8 mm, Se = 6.8 mm, Sv = 29.9 mm for T ≥ 2 h

    ON THE PERFORMANCE OF GNSS LEVELLING OVER STEEP SLOPES

    Get PDF
    In geodetic applications variety, one of the main current focuses is recently to determine the heights of ground stations with high accuracy. Specially the possibility of acquiring 3D information of the point positioning with high accuracy is opening up new strategies of investigating the heighting. Global Navigation Satellite System (GNSS) for 3D positioning is undergoing rapid developments andGNSS heighting can be an alternative to terrestrial techniques of height measurements. This paper presents a research study on the use of GNSS heighting in the case of steep slopes and multipath issue. Short baseline solution strategieswere performed by using Bernese Software v. 5.0. The analysis results are also compared to the results of techniques of the terrestrial levelling. The results showthat GNSS can be used as an practical surveying method to the terrestrial levelling with comparable accuracies. Furthermore, one can save up to 1 hour using GNSSinstead of geometric levelling over a steep slope of a 100 m. On the other hand, as usual multipath is the primary error source decreasing the efficiency of GNSS, and it has been studied experimentally in this paper

    Assessment of geodetic velocities using GPS campaign measurements over long baseline lengths

    Get PDF
    GPS campaign measurements are frequently used in order to determine geophysical phenomena such as tectonic motion, fault zones, landslides, and volcanoes. When observation duration is shorter, the accuracy of coordinates are degraded and the accuracy of point velocities are affected. The accuracies of the geodetic site velocities from a global network of International GNSS Service (IGS) stations were previously investigated using only PPP. In this study, we extend which site velocities will also be assessed, including fundamental relative positioning. PPP-derived results will also be evaluated to see the effect of reprocessed JPL products, single-receiver ambiguity resolution, repeating survey campaigns minimum 3 days at the site, and eliminating noisier solutions prior to the year 2000. To create synthetic GPS campaigns, 18 globally distributed, continuously operating IGS stations were chosen. GPS data were processed comparatively using GAMIT/GLOBK v10.6 and GIPSY-OASIS II v6.3. The data of synthetic campaign GPS time series were processed using a regression model accounting for the linear and seasonal variation of the ground motion. Once the velocities derived from 24&thinsp;h sessions were accepted as the truth, the results from sub-sessions were compared with the results of 24&thinsp;h and hypothesis testing was applied for the significance of the differences. The major outcome of this study is that on global scales (i.e. over long distances) with short observation sessions, the fundamental relative positioning produces results similar to PPP. The reliability of the velocity estimation for GPS horizontal baseline components has now been improved to about 85&thinsp;% of the average for observation durations of 12&thinsp;h.</p

    Experimental observation of second-harmonic generation and diffusion inside random media

    Get PDF
    We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a highly-scattering slab of porous gallium phosphide. Two complementary techniques for determining the distribution are used. First, the spatial distribution of second-harmonic light intensity at the side of a cleaved slab has been recorded. Second, the total second-harmonic radiation at each side of the slab has been measured for several samples at various wavelengths. By combining these measurements with a diffusion model for second-harmonic generation that incorporates extrapolated boundary conditions, we present a consistent picture of the distribution of the second-harmonic intensity inside the slab. We find that the ratio 2ω/Lc\ell_{2\omega}/L_c of the mean free path at the second-harmonic frequency to the coherence length, which was suggested by some earlier calculations, cannot describe the second-harmonic yield in our samples. For describing the total second-harmonic yield, our experiments show that the scattering parameter at the fundamental frequency \k_{1\omega}\ell_{1\omega} is the most relevant parameter in our type of samples.Comment: 10 pages, 7 figure

    The effect of racemic gossypol and AT-101 on angiogenic profile of OVCAR-3 cells: a preliminary molecular framework for gossypol enantiomers

    No full text
    To compare the effect of racemic gossypol with its (–)/(–) enantiomer (AT-101) on expression profiles of angiogenic molecules by mRNA levels in human ovarian cancer cell line OVCAR-3. Methods: Cell viability assay (2,3-bis (2-methoxy-4-nitro-5- sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) was used to detect cytotoxicity of gossypol enantiomers. DNA fragmentation by an enzyme-linked immunosorbent (ELISA) assay was used to evaluate the rate of apoptosis. The mRNA expression levels of angiogenic molecules were investigated by Human Angiogenesis RT2 ProfilerTM PCR Array (SuperArray, Frederick, MD). Results: Both racemic form and AT-101 resulted in a significant cytotoxicity and induced apoptosis. This effect was observed in a dose- and time dependent manner. However, AT-101 was much more potent. In addition, the treatment of 10 μM of racemic gossypol alone and 3 μM of AT-101 alone resulted in significant down-regulation (≥ 3 fold) in mRNA levels of some pivotal angiogenic molecules in OVCAR-3, but altered gene profiles were different by the treatment of each enantiomer. Conclusion: The efficacy of two gossypol enantiomers in OVCAR-3 cells showed distinction. AT-101 was much more potent than racemic gossypol, not only by means of cell death and apoptosis, but also by modulation of angiogenic molecules released from OVCAR-3 cells. Further studies with endothelial cells should be done to verify the anti-angiogenic effect of gossypol enantiomers in cancer treatment

    Point defect segregation and its role in the detrimental nature of Frank partials in Cu(In,Ga)Se2 thin-film absorbers

    Get PDF
    The interaction of point defects with extrinsic Frank loops in the photovoltaic absorber material Cu(In,Ga)Se₂ was studied by aberration-corrected scanning transmission electron microscopy in combination with electron energy-loss spectroscopy and calculations based on density-functional theory. We find that Cu accumulation occurs outside of the dislocation cores bounding the stacking fault due to strain-induced preferential formation of Cu‾²In, which can be considered a harmful hole trap in Cu(In,Ga)Se₂. In the core region of the cation-containing α-core, Cu is found in excess. The calculations reveal that this is because Cu on In-sites is lowering the energy of this dislocation core. Within the Se-containing β-core, in contrast, only a small excess of Cu is observed, which is explained by the fact that Cu¡ⁿ and Cu¡ are the preferred defects inside this core, but their formation energies are positive. The decoration of both cores induces deep defect states, which enhance nonradiative recombination. Thus, the annihilation of Frank loops during the Cu(In,Ga)Se₂ growth is essential in order to obtain absorbers with high conversion efficiencies

    Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.In polycrystalline semiconductor absorbers for thin-film solar cells, structural defects may enhance electron-hole recombination and hence lower the resulting energy conversion efficiency. To be able to efficiently design and optimize fabrication processes that result in high-quality materials, knowledge of the nature of structural defects as well as their formation and annihilation during film growth is essential. Here we show that in co-evaporated Cu(In,Ga)Se-2 absorber films the density of defects is strongly influenced by the reaction path and substrate temperature during film growth. A combination of high-resolution electron microscopy, atomic force microscopy, scanning tunneling microscopy, and X-ray diffraction shows that Cu(In,Ga)Se-2 absorber films deposited at low temperature without a Cu-rich stage suffer from a high density of - partially electronically active - planar defects in the {112} planes. Real-time X-ray diffraction reveals that these faults are nearly completely annihilated during an intermediate Cu-rich process stage with [Cu]/([In] + [Ga]) > 1. Moreover, correlations between real-time diffraction and fluorescence analysis during Cu-Se deposition reveal that rapid defect annihilation starts shortly before the start of segregation of excess Cu-Se at the surface of the Cu(In,Ga)Se-2 film. The presented results hence provide direct insights into the dynamics of the film-quality-improving mechanism

    Optoelectronic Inactivity of Dislocations in Cu In,Ga Se2 Thin Films

    Get PDF
    High efficiency Cu In,Ga Se2 CIGS thin film solar cells are based on poly crystalline CIGS absorber layers, which contain grain boundaries, stacking faults, and dislocations. While planar defects in CIGS layers have been investigated extensively, little is still known about the impact of dislocations on optoelectronic properties of CIGS absorbers. Herein, evidence for an optoelectronic inactivity of dislocations in these thin films is given, in contrast to the situation at grain boundaries. This unique behavior is explained by the extensive elemental redis tribution detected around dislocation cores, which is connected with the dislocation strain field, probably leading to a shift of defect states toward the band edge

    Elemental redistributions at structural defects in Cu(In,Ga)Se₂ thin films for solar cells

    Get PDF
    The microstructural evolution of Cu(In,Ga)Se2 absorber layers during a three-stage-type co-evaporation process was studied to elucidate the effect of a Cu-rich stage on the formation of extended structural defects. Defect densities for two Cu-poor samples, one interrupted before and one after this crucial Cu-rich composition stage, were investigated by scanning transmission electron microscopy (STEM) imaging. The structure and chemical nature of individual defects were investigated by aberration-corrected high-resolution STEM in combination with electron energy-loss spectroscopy on the atomic-scale. In spite of the different defect densities between the two samples, most of the individual defects exhibited similar chemistry. In particular, the elemental distributions of atomic columns at {112} twin planes, which are very frequent in Cu(In,Ga)Se2 thin films, were found to be the same as in the defect-free grain interiors. In contrast, within grain boundaries, dislocation cores, and other structurally more complex defects, elemental redistributions of Cu and In were observed

    Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina

    Get PDF
    Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting
    corecore