3,448 research outputs found
Synchronization in Complex Systems Following the Decision Based Queuing Process: The Rhythmic Applause as a Test Case
Living communities can be considered as complex systems, thus a fertile
ground for studies related to their statistics and dynamics. In this study we
revisit the case of the rhythmic applause by utilizing the model proposed by
V\'azquez et al. [A. V\'azquez et al., Phys. Rev. E 73, 036127 (2006)]
augmented with two contradicted {\it driving forces}, namely: {\it
Individuality} and {\it Companionship}. To that extend, after performing
computer simulations with a large number of oscillators we propose an
explanation on the following open questions (a) why synchronization occurs
suddenly, and b) why synchronization is observed when the clapping period
() is ( is the mean self period
of the spectators) and is lost after a time. Moreover, based on the model, a
weak preferential attachment principle is proposed which can produce complex
networks obeying power law in the distribution of number edges per node with
exponent greater than 3.Comment: 16 pages, 5 figure
A New Family of Multistep Methods with Improved Phase Lag Characteristics for the Integration of Orbital Problems
In this work we introduce a new family of ten-step linear multistep methods
for the integration of orbital problems. The new methods are constructed by
adopting a new methodology which improves the phase lag characteristics by
vanishing both the phase lag function and its first derivatives at a specific
frequency. The efficiency of the new family of methods is proved via error
analysis and numerical applications.Comment: 21 pages, 3 figures, 1 tabl
The multilevel trigger system of the DIRAC experiment
The multilevel trigger system of the DIRAC experiment at CERN is presented.
It includes a fast first level trigger as well as various trigger processors to
select events with a pair of pions having a low relative momentum typical of
the physical process under study. One of these processors employs the drift
chamber data, another one is based on a neural network algorithm and the others
use various hit-map detector correlations. Two versions of the trigger system
used at different stages of the experiment are described. The complete system
reduces the event rate by a factor of 1000, with efficiency 95% of
detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure
The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions
We analyse the effect of intrinsic fluctuations on the properties of bistable
stochastic systems with time scale separation operating under1 quasi-steady
state conditions. We first formulate a stochastic generalisation of the
quasi-steady state approximation based on the semi-classical approximation of
the partial differential equation for the generating function associated with
the Chemical Master Equation. Such approximation proceeds by optimising an
action functional whose associated set of Euler-Lagrange (Hamilton) equations
provide the most likely fluctuation path. We show that, under appropriate
conditions granting time scale separation, the Hamiltonian can be re-scaled so
that the set of Hamilton equations splits up into slow and fast variables,
whereby the quasi-steady state approximation can be applied. We analyse two
particular examples of systems whose mean-field limit has been shown to exhibit
bi-stability: an enzyme-catalysed system of two mutually-inhibitory proteins
and a gene regulatory circuit with self-activation. Our theory establishes that
the number of molecules of the conserved species are order parameters whose
variation regulates bistable behaviour in the associated systems beyond the
predictions of the mean-field theory. This prediction is fully confirmed by
direct numerical simulations using the stochastic simulation algorithm. This
result allows us to propose strategies whereby, by varying the number of
molecules of the three conserved chemical species, cell properties associated
to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.Comment: 33 pages, 9 figures, accepted for publication in the Journal of
Chemical Physic
The cyclin-dependent kinase inhibitor p57(Kip2) is epigenetically regulated in carboplatin resistance and results in collateral sensitivity to the CDK inhibitor seliciclib in ovarian cancer
Carboplatin remains a first-line agent in the management of epithelial ovarian cancer (EOC). Unfortunately, platinum-resistant disease ultimately occurs in most patients. Using a novel EOC cell line with acquired resistance to carboplatin: PEO1CarbR, genome-wide micro-array profiling identified the cyclin-dependent kinase inhibitor p57(Kip2) as specifically downregulated in carboplatin resistance. Presently, we describe confirmation of these preliminary data with a variety of approaches
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
