8 research outputs found

    A multisite photometric study of two unusual Beta Cep stars: the magnetic V2052 Oph and the massive rapid rotator V986 Oph

    Full text link
    We report a multisite photometric campaign for the Beta Cep stars V2052 Oph and V986 Oph. 670 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with eight telescopes on five continents during 182 nights. Frequency analyses of the V2052 Oph data enabled the detection of three pulsation frequencies, the first harmonic of the strongest signal, and the rotation frequency with its first harmonic. Pulsational mode identification from analysing the colour amplitude ratios confirms the dominant mode as being radial, whereas the other two oscillations are most likely l=4. Combining seismic constraints on the inclination of the rotation axis with published magnetic field analyses we conclude that the radial mode must be the fundamental. The rotational light modulation is in phase with published spectroscopic variability, and consistent with an oblique rotator for which both magnetic poles pass through the line of sight. The inclination of the rotation axis is 54o <i< 58o and the magnetic obliquity 58o <beta< 66o. The possibility that V2052 Oph has a magnetically confined wind is discussed. The photometric amplitudes of the single oscillation of V986 Oph are most consistent with an l=3 mode, but this identification is uncertain. Additional intrinsic, apparently temporally incoherent, light variations of V986 Oph are reported. Different interpretations thereof cannot be distinguished at this point, but this kind of variability appears to be present in many OB stars. The prospects of obtaining asteroseismic information for more rapidly rotating Beta Cep stars, which appear to prefer modes of higher l, are briefly discussed.Comment: 12 pages, 8 figures, MNRAS, in pres

    Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species

    Get PDF
    According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides providing empirical evidence to the theoretically predicted contrasting responses of cephalopods and elasmobranchs to disturbances, our results are useful for the sustainable exploitation of these resourcesVersión del editor4,411

    The Tachykinin Peptide Family, with Particular Emphasis on Mammalian Tachykinins and Tachykinin Receptor Agonists

    No full text
    corecore