118 research outputs found

    Strain localization in polycrystalline material with second phase particles: Numerical modeling with application to ice mixtures

    Get PDF
    We use a centimeter-scale 2-D numerical model to investigate the effect of the presence of a second phase with various volume percent, shape, and orientation on strain localization in a viscoelastic matrix. In addition, the evolution of bulk rheological behavior of aggregates during uniaxial compression is analyzed. The rheological effect of dynamic recrystallization processes in the matrix is reproduced by viscous strain softening. We show that the presence of hard particles strengthens the aggregate, but also causes strain localization and the formation of ductile shear zones in the matrix. The presence of soft particles weakens the aggregate, while strain localizes within the particles and matrix between particles. The shape and the orientation of second phases control the orientation, geometry, and connectivity of ductile shear zones. We propose an analytical scaling method that translates the bulk stress measurements of our 2-D simulations to 3-D experiments. Comparing our model to the laboratory uniaxial compression experiments on ice cylinders with hard second phases allows the analysis of transient and steady-state strain distribution in ice matrix, and strain partitioning between ice and second phases through empirical calibration of viscous softening parameters. We find that the ice matrix in two-phase aggregates accommodates more strain than the applied bulk strain, while at faster strain rates some of the load is transferred into hard particles. Our study illustrates that dynamic recrystallization processes in the matrix are markedly influenced by the presence of a second phase

    Fracturing and Porosity Channeling in Fluid Overpressure Zones in the Shallow Earth’s Crust

    Get PDF
    At the time of energy transition, it is important to be able to predict the effects of fluid overpressures in different geological scenarios as these can lead to the development of hydrofractures and dilating high-porosity zones. In order to develop an understanding of the complexity of the resulting effective stress fields, fracture and failure patterns, and potential fluid drainage, we study the process with a dynamic hydromechanical numerical model. The model simulates the evolution of fluid pressure buildup, fracturing, and the dynamic interaction between solid and fluid. Three different scenarios are explored: fluid pressure buildup in a sedimentary basin, in a vertical zone, and in a horizontal layer that may be partly offset by a fault. Our results show that the geometry of the area where fluid pressure is successively increased has a first-order control on the developing pattern of porosity changes, on fracturing, and on the absolute fluid pressures that sustained without failure. If the fluid overpressure develops in the whole model, the effective differential and mean stress approach zero and the vertical and horizontal effective principal stresses flip in orientation. The resulting fractures develop under high lithostatic fluid overpressure and are aligned semihorizontally, and consequently, a hydraulic breccia forms. If the area of high fluid pressure buildup is confined in a vertical zone, the effective mean stress decreases while the differential stress remains almost constant and failure takes place in extensional and shear modes at a much lower fluid overpressure. A horizontal fluid pressurized layer that is offset shows a complex system of effective stress evolution with the layer fracturing initially at the location of the offset followed by hydraulic breccia development within the layer. All simulations show a phase transition in the porosity where an initially random porosity reduces its symmetry and forms a static porosity wave with an internal dilating zone and the presence of dynamic porosity channels within this zone. Our results show that patterns of fractures, hence fluid release, that form due to high fluid overpressures can only be successfully predicted if the geometry of the geological system is known, including the fluid overpressure source and the position of seals and faults that offset source layers and seals

    Seismic anisotropy of mid crustal orogenic nappes and their bounding structures: An example from the Middle Allochthon (Seve Nappe) of the Central Scandinavian Caledonides

    Get PDF
    We report compositional, microstructural and seismic properties from 24 samples collected from the Middle Allochthon (Seve Nappe) of the central Scandinavian Caledonides, and its bounding shear zones. The samples stem both from field outcrops and the continental drilling project COSC-1 and include quartzofeldspathic gneisses, hornblende gneisses, amphibolites, marbles, calc-silicates, quartzites and mica schists, of medium to high-strain. Seismic velocities and anisotropy of P (AVp) and S (AVs) waves of these samples were calculated using microstructural and crystal preferred orientation data obtained from Electron Backscatter Diffraction analysis (EBSD). Mica-schist exhibits the highest anisotropy (AVP ~ 31%; max AVs ~34%), followed by hornblende-dominated rocks (AVp ~5–13%; max AVs 5–10%) and quartzites (AVp ~6.5–10.5%; max AVs ~7.5–12%). Lowest anisotropy is found in calc-silicate rocks (AVp ~4%; max AVs 3–4%), where the symmetry of anisotropy is more complex due to the contribution to anisotropy from several phases. Anisotropy is attributed to: 1) modal mineral composition, in particular mica and amphibole content, 2) CPO intensity, 3) crystallization of anisotropic minerals from fluids circulating in the shear zone (calc-silicates and amphibolites), and to a lesser extent 4) compositional banding of minerals with contrasting elastic properties and density. Our results link observed anisotropy to the rock composition and strain in a representative section across the Central Scandinavian Caledonides and indicate that the entire Seve Nappe is seismically anisotropic. Strain has partitioned on the nappe scale, and likely on the microstructural scale. High- strain shear zones that develop at boundaries of the allochthon and internally within the allochthon show higher anisotropy than a more moderately strained interior of the nappe. The Seve Nappe may be considered as a template for deforming, ductile and flowing middle crust, which is in line with general observations of seismic anisotropy in mid-crustal settings

    Quantitative characterization of plastic deformation of single diamond crystals: A high pressure high temperature (HPHT) experimental deformation study combined with electron backscatter diffraction (EBSD)

    Get PDF
    We report the results of a high-pressure high-temperature (HPHT) experimental investigation into the deformation of diamonds using the D-DIA apparatus. Electron backscatter diffraction (EBSD) data confirm that well-defined 300–700 nm wide {111} slip lamellae are in fact deformation micro-twins with a 60° rotation around a axis. Such twins formed at high confining pressures even without any apparatus-induced differential stress; mechanical anisotropy within the cell assembly was sufficient for their formation with very little subsequent lattice bending ( slip system dominates as expected for the face-centred cubic (FCC) structure of diamond. Slip occurs on multiple {111} planes resulting in rotation around axes. Deformation microstructure characteristics depend on the orientation of the principal stress axes and finite strain but are independent of confining pressure and nitrogen content. All of the uniaxially deformed samples took on a brown colour, irrespective of their initial nitrogen characteristics. This is in contrast to the two quasi-hydrostatic experiments, which retained their original colour (colourless for nitrogen free diamond, yellow for single substitutional nitrogen, Type Ib diamond) despite the formation of {111} twin lamellae. Comparison of our experimental data with those from two natural brown diamonds from Finsch mine (South Africa) shows the same activation of the dominant slip system. However, no deformation twin lamellae are present in the natural samples. This difference may be due to the lower strain rates experienced by the natural samples investigated. Our study shows the applicability and potential of this type of analysis to the investigation of plastic deformation of diamonds under mantle conditions

    Subgrain rotation recrystallization during shearing: insights from full-field numerical simulations of halite polycrystals

    Get PDF
    We present, for the first time, results of full-field numerical simulations of subgrain rotation recrystallization of halite polycrystals during simple shear deformation. The series of simulations show how microstructures are controlled by the competition between (i) grain size reduction by creep by dislocation glide and (ii) intracrystalline recovery encompassing subgrain coarsening by coalescence through rotation and alignment of the lattices of neighboring subgrains. A strong grain size reduction develops in models without intracrystalline recovery, as a result of the formation of high-angle grain boundaries when local misorientations exceed 15°. The activation of subgrain coarsening associated with recovery decreases the stored strain energy and results in grains with low intracrystalline heterogeneities. However, this type of recrystallization does not significantly modify crystal preferred orientations. Lattice orientation and grain boundary maps reveal that this full-field modeling approach is able to successfully reproduce the evolution of dry halite microstructures from laboratory deformation experiments, thus opening new opportunities in this field of research. We demonstrate how the mean subgrain boundary misorientations can be used to estimate the strain accommodated by dislocation glide using a universal scaling exponent of about 2/3, as predicted by theoretical models. In addition, this strain gauge can be potentially applied to estimate the intensity of intracrystalline recovery, associated with temperature, using quantitative crystallographic analyses in areas with strain gradients

    Melt-present shear zones enable intracontinental orogenesis

    Get PDF
    Localized rheological weakening is required to initiate and sustain intracontinental orogenesis, but the reasons for weakening remain debated. The intracontinental Alice Springs orogen dominates the lithospheric architecture of central Australia and involved prolonged (450–300 Ma) but episodic mountain building. The mid-crustal core of the orogen is exposed at its eastern margin, where field relationships and microstructures demonstrate that deformation was accommodated in biotite-rich shear zones. Rheological weakening was caused by localized melt-present deformation coupled with melt-induced reaction softening. This interpretation is supported by the coeval and episodic nature of melt-present deformation, igneous activity, and sediment shed from the developing orogen. This study identifies localized melt availability as an important ingredient enabling intracontinental orogenesis

    Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    Get PDF
    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized

    Relative rates of fluid advection, elemental diffusion and replacement govern reaction front patterns

    Get PDF
    Replacement reactions during fluid infiltration into porous media, rocks and buildings are known to have important implications for reservoir development, ore formation as well as weathering. Natural observations and experiments have shown that in such systems the shape of reaction fronts can vary significantly ranging from smooth, rough to highly irregular. It remains unclear what process-related knowledge can be derived from these reaction front patterns. In this contribution we show a numerical approach to test the effect of relative rates of advection, diffusion, and reaction on the development of reaction fronts patterns in granular aggregates with permeable grain boundaries. The numerical model takes (i) fluid infiltration along permeable grain boundaries, (ii) reactions and (iii) elemental diffusion into account. We monitor the change in element concentration within the fluid, while reactions occur at a pre-defined rate as a function of the local fluid concentration. In non-dimensional phase space using Péclet and Damköhler numbers, results show that there are no rough fronts without advection (Péclet10−3). As advection becomes more dominant and reaction slower, roughness develops across several grains with a full microstructure mimicking replacement in the most extreme cases. The reaction front patterns show an increase in roughness with increasing Péclet number from Péclet 10 to 100 but then a decrease in roughness towards higher Péclet numbers controlled by the Damköhler number. Our results indicate that reaction rates are crucial for pattern formation and that the shape of reaction fronts is only partly due to the underlying transport mechanism

    Outcrop scale mixing enhanced by permeability variations: the role of stationary and travelling waves of high saturation indices

    Get PDF
    To study the ore mineralization at the outcrop scale we merge an advection–diffusion simulation with the geochemical software iphreeqc to model the mixing of two realistic fluids. We simulate the infiltration of a metal-rich fluid into a rock that is saturated with pore fluid. We test the feedback effects with a number of scenarios based on an outcrop-scale 5 × 5 m model consisting of two high-permeable vertical faults within a low-permeable host rock that lead into a permeable layer. The hot metal-rich fluid enters the model through the faults from below. We solve the advection–diffusion equation for 12 chemical species and temperature, and use iphreeqc to determine the resulting properties of local fluid domains as well as related saturation indices for minerals. The faults in the model act as pathways for the metal-rich fluid, with the infiltrating fluid displacing the pore fluid. Mixing in the model takes place as a function of advection along permeable faults coupled with diffusion of chemical species at the interface between two fluids, while heat diffusion is fast enough (103 times faster) to equilibrate temperature. Simulations show a high saturation index of mixing-derived minerals such as barite at the interface between the two fluids as a result of fluid mixing. Fast fluid pathways (i.e. faults) show travelling waves of high saturation indices of barite, while low-permeability zones such as fault walls and areas below less permeable layers experience stationary waves of high saturation indices. Our results show that, depending on the dominant transport process (advection or diffusion), mineralization will localize next to permeability contrasts in zones where local diffusion dominates

    Non-basal dislocations should be accounted for in simulating ice mass flow

    Get PDF
    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects – the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [c][c] or 〈c+a〉〈c+a〉 Burgers vectors. These [c][c] or 〈c+a〉〈c+a〉 dislocations represent up to 35%35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change
    • …
    corecore