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Abstract12

Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice13

flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the14

specific case of ice, their observation is not always accessible by means of the classical tools15

such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation16

population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained17

using crystal orientation measurements via electron backscattering diffraction (EBSD) as-18

sociated with appropriate analyses based on the Nye (1950) approach. The present study19

uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables20

the characterization of GNDs. Applied to ice, this method documents, for the first time, the21

presence of dislocations with non-basal [c] or < c+a > Burgers vectors. These [c] or < c+a >22

dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples.23

Our findings offer a more complex and comprehensive picture of the key plasticity processes24

responsible for polycrystalline ice creep and provide better constraints on the constitutive25

mechanical laws implemented in ice sheet flow models used to predict the response of Earth26

ice masses to climate change.27

Keywords:28

Non-basal dislocations in ice, Weighted Burgers Vectors, cryo-EBSD, crystal plasticity29

1. Introduction30

Understanding the deformation behavior of ice crystals is essential for modeling the flow31

of glaciers and ice sheets. Ice on Earth, ice Ih, has an hexagonal crystalline structure. It has32

a strong viscoplastic anisotropy, since deformation occurs almost exclusively by dislocation33

glide on the basal plane (Duval et al., 1983). This crystal-scale anisotropy results in strong34

textures (crystallographic orientations) and, hence, in large-scale texture-induced anisotropy.35

This anisotropy has crucial effects on large-scale ice flow (e.g. Durand et al. (2007)). It is36

responsible, for instance, for abrupt changes in rheology between the ice sheet and the ice37
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shelf (Ma et al., 2010) and for basal folding (Bons et al., 2016). The viscoplastic anisotropy38

of ice crystals also results in strong strain and stress heterogeneity (Grennerat et al., 2012),39

leading to dynamic recrystallization (Duval et al., 1983; Chauve et al., 2015), a process that40

is essentially controlled by the dislocation behavior and interactions (Chauve et al., 2017).41

Ice is therefore a good analogue to study the behaviour of materials with high viscoplastic42

anisotropy deforming at high temperature (T/Tmelt > 0.9), such as the Earth lower crust and43

mantle, where the dominant rock-forming minerals (e.g. feldspar, quartz, olivine, pyroxenes,44

micas) are highly anisotropic.45

However, the difficulty in observing dislocations by TEM or X-ray diffraction results in a46

lack of knowledge on the activity of other slip systems or of mechanisms such as climb or47

cross-slip that may complement basal glide. The lack of constraints on the activity of the48

non-basal slip systems in ice limits the ability of micro-macro crystal plasticity methods to49

simulate the mechanical behaviour of ice and its evolution (see Montagnat et al. (2014) for a50

review). To approach a realistic mechanical behaviour, which can be used to model the flow51

of glaciers and polar ice sheets, strong assumptions have been made (see Castelnau et al.52

(1997); Kennedy et al. (2013) for instance). In particular, in all models based on crystal53

plasticity, four to five independent slip systems are required to maintain strain compatibility54

(Hutchinson, 1977), hence for ice, glide on non-basal slip systems is allowed. Castelnau et al.55

(1997) imposed a non basal activity 70 times harder than basal activity, while Llorens et al.56

(2016) lowered this ratio to 20, enabling a significant contribution of non-basal systems to57

deformation, without any experimental evidence to stand on.58

Most observed dislocations in ice so far have one of the three equivalent 1/3 < 21̄1̄0 > Burg-59

ers vectors and are constrained to glide in the basal plane (0001) owing to their tendency to60

dissociate into partial dislocations (Higashi, 1988; Hondoh, 2000). Rare 1/3 < 21̄1̄0 > dis-61

locations have been observed to glide on prismatic planes by X-ray diffraction in low strain62

conditions where very few dislocations were activated (Shearwood and Withworth, 1989),63

and when crystals were oriented to minimize the resolved shear stress in the basal plane (Liu64

and Baker, 1995). Indirect evidence of double cross-slip of basal dislocations was obtained65

from X-ray diffraction observations on single crystal deformed in torsion (Montagnat et al.,66

2006). Dislocation Dynamic simulations estimated the local stress necessary to activate this67

mechanism (Chevy et al., 2012).68

So far, direct observations (via X-ray diffraction) of dislocations with Burgers vector [c] =69

[0001] or < c+ a >= 1/3 < 112̄3 > are limited to very specific conditions such as peripheral70

dislocations of stacking faults formed during crystal growth or under cooling (Higashi, 1988).71

The formation of stacking faults under cooling is assumed to result from climb of the basal72

component of dislocation loops with < c+ a > Burgers vector, induced by the precipitation73

of excess point defects generated by cooling. Dislocation loops with [c]-component Burgers74

vectors were also observed to form due to tiny inclusions (water droplets for pure ice, or75

solute pockets for NH3-doped ice) formed during crystallization and due to thermal stress76

imposed in the crystal growing apparatus (Oguro and Higashi, 1971). To our knowledge,77

there are no other direct observations of dislocations with a [c]-component Burgers vector for78

pure or natural ice.79

Weikusat et al. (2011b) indirectly inferred [c] or <c+a> dislocations as necessary to explain80

some subgrain boundary structures observed in ice core samples. The techniques used (sur-81

face sublimation to extract subgrain boundaries and discrete X-ray Laue diffraction analyses82
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to obtain local orientations along profiles) did not provide full constraints on the nature of83

the subgrain boundaries. Nevertheless, by assuming that the subgrain boundaries were per-84

pendicular to the surface, some could be interpreted as tilt boundaries composed of [c] or85

< c+ a > dislocations.86

Dislocations are nucleated and contribute to plastic deformation by gliding. The dislocations87

can be stored in the microstructure by two modes; as trapped dislocations due to dislocation88

interaction, called Statistically Stored Dislocations (SSDs) and as Geometrically Necessary89

Dislocations (GNDs) (Fleck et al., 1994). GNDs are intimately associated with lattice cur-90

vature, and hence contribute to local strain that can be detected by EBSD as misorientation91

gradients. They contribute to heterogeneous plastic strain, such as bending or twisting but92

they can develop even though the experimental conditions allows the possibility of a homo-93

geneous deformation (Van der Giessen and Needleman, 2003). It is generally acknowledged94

that density of GNDs is significantly higher than density of SSDs (Kubin and Mortensen,95

2003).96

EBSD analyses of ice were recently made possible thanks to cryo-stages able to maintain97

samples at very cold temperatures (-100 to -150◦C), under low vacuum. This technique gives98

access to full crystal orientations over reasonably large polycrystalline samples (few cm2),99

with a good spatial resolution (down to 0.1 µm). The first applications of EBSD on ice100

were oriented towards full crystal orientation measurements at the grain level (Obbard et al.,101

2006). High spatial resolution crystal misorientations within grains were recently used to102

characterize dislocation substructures (Piazolo et al., 2008; Montagnat et al., 2011; Weikusat103

et al., 2011a; Montagnat et al., 2015; Chauve et al., 2017). EBSD observations performed in104

the above mentioned studies are post-mortem and therefore record the effects of the GNDs105

remaining after relaxation of the internal stress field through anelastic deformation.106

Since conventional EBSD maps are 2D, they do not give access to the full dislocation (Nye)107

tensor α but only to five components (α12, α21, α13, α23, α33) where the subscript 3 refers to108

the normal to the EBSD surface. By this mean, EBSD observations provide lower bounds109

of GND density (Pantleon, 2008). Recently, Wheeler et al. (2009) proposed a method of110

characterization of the GNDs called the “weighted Burgers vector” (WBV) (see Appendix A111

for a detailed description). It corresponds to the projection of the Nye tensor on the EBSD112

surface and can be expressed as WBV = (α13, α23, α33). The WBV tool does not aim at ap-113

proaching the full dislocation density tensor (as attempted by Pantleon (2008) for instance),114

but does not require the third dimension to provide meaningful information about the GND115

population. Its amplitude gives a lower bound for the density of GNDs and its direction116

refers to the Burgers vector of the sampled GNDs. One important point is that although the117

WBV does not record all the GNDs present, it cannot contain phantom directions. If it has118

a significant [c]-component then at least some of the Burgers vectors of the GNDs must have119

a [c]-component though this does not mean they have to be parallel to [c].120

As for the Nye tensor, the WBV analysis only reflects the GND contribution to the dislo-121

cation density. Without further assumptions, this contribution cannot be directly related to122

the mobile dislocations responsible for most of the plastic deformation.123

Cryo-EBSD associated with the WBV analysis was recently shown to be very efficient to124

characterize the nature of GNDs in ice (Piazolo et al., 2015). Although restricted to small125

areas, this previous study revealed a contribution of dislocations with [c]- or < c + a >-126

component. These observations encouraged us to perform new EBSD observations on ice127
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polycrystals deformed in the laboratory, with a higher spatial resolution and over larger ar-128

eas than in the preliminary study of Piazolo et al. (2015).129

The present work aims therefore at (i) documenting the presence of dislocations with Burg-130

ers vectors comprising a component along [c], (ii) estimating quantitatively the significance131

of these dislocations within the observed GNDs, and (iii) discussing the implication of this132

observation for the micro-macro modeling of ice mechanical behaviour, up to the scale of133

glaciers and polar ice flow.134

2. Material and Methods135

Large ice polycrystalline samples were deformed in torsion and uniaxial unconfined com-136

pression under constant imposed load at high homologous temperature (T/Tmelt ∼ 0.98, in a137

cold room). The samples deformed by compression had a columnar initial grain shape with138

large grain size (1 to 4 cm2) (see Grennerat et al. (2012); Chauve et al. (2017) for details)139

and were deformed under a constant load of 0.5 MPa applied in the plane perpendicular to140

the column directions, up to a macroscopic strain of about 3%. Torsion tests were performed141

on solid cylinders (radius × height = 18 mm × 60 mm) of granular ice (millimetre grain142

size), under a maximum applied shear stress at the outer radius between 0.5 and 0.6 MPa143

(experimental conditions similar to the ones in Bouchez and Duval (1982); Montagnat et al.144

(2006)). Several tests enabled to cover a range of maximum shear strain between 0.01 and145

2. These two experimental conditions are complementary. The compression tests enable to146

follow the first step of deformation in a model microstructure invariant in the third dimension147

(parallel to the columns) that is close to a 2.5D configuration, where surface observations are148

a good proxy to the bulk mechanisms (Grennerat et al., 2012). The torsion experiments give149

access to large strain levels on an initially isotropic microstructure and texture. A summary150

of the experimental conditions of the tests used in this study is given in table 1.151

Id Sample Mechanical test T ◦C Stress εmax γmax

CI01 Columnar ice Uniaxial comp. −7 0.5 MPa 0.03
TGI01 Granular ice Torsion −7 0.46 MPa 0.006 0.012
TGI02 Granular ice Torsion −7 0.49 MPa 0.1 0.2
TGI03 Granular ice Torsion −7 0.59 MPa 0.21 0.42
TGI04 Granular ice Torsion −7 0.63 MPa 0.87 1.96

Table 1: Summary of the experimental conditions for the tests used in the study. Compression tests were
performed under constant applied load, and torsion test under constant applied torque (the corresponding
maximum shear stress is given here).

Samples (20×10×3 mm3) were extracted from the deformed blocks for cryo-EBSD obser-152

vations (angular resolution of 0.7◦, spatial resolution of 5 and 20 µm for this study). The153

torsion samples were cut perpendicular to the radius, as close as possible to the external154

side of the cylinder. Appropriate adjustment of the vacuum and temperature (1 Pa and155

-100◦C) to reduce sublimation was made following Montagnat et al. (2015). This allowed156

EBSD mapping of the entire selected areas with indexation rates higher than 85%.157

At the compression and shear strains reached, dynamic recrystallization mechanisms such158

as nucleation at triple junctions, highly misoriented subgrain boundaries and kink bands are159
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observed as in Chauve et al. (2017). In the compression sample analyses we focused on grain160

boundaries and triple junction areas. “Typical” dislocation substructures are presented in161

figures 1 and 2. Similar features were observed in the torsion samples. In these samples,162

we analyzed larger areas in order to obtain statistical information about the nature of the163

dislocations involved in the observed substructures.164

165

In order to characterize the dislocations involved in the formation of subgrain boundaries,166

we used WBV analyses following Wheeler et al. (2009) (see Appendix A for a detailed de-167

scription). The WBV represents the sum over different dislocation types of the product of168

[(density of intersections of dislocation lines within a selected area of the map) × (Burgers169

vector)]. Each dislocation line crossing the EBSD surface contributes to the WBV but the170

weight of this contribution depends of the angle between the dislocation line and the EBSD171

surface. It is one (zero) if the dislocation line is perpendicular to (within) the EBSD surface.172

The WBV analysis gives a vector which can be expressed in the crystal or sample reference173

frame.174

The WBV analyses were performed as (i) a point by point analysis that enables to plot175

the WBV direction and magnitude along the dislocation substructures and (ii) an integral176

WBV calculation of the net Burgers vector content of dislocations intersecting a given area177

of a map by an integration around the edge of this area. The integral WBV calculated over178

a given area is projected over the four non-independent lattice components of the hexago-179

nal symmetry ([112̄0],[2̄110],[12̄10] and [0001] noted WBVa1,WBVa2,WBVa3,WBVc). This180

integral WBV analysis complements the point-by-point WBV calculations and, due to the181

integration over an area, reduces the noise level in the analysis (see Appendix A). In special182

cases the integration also induces a loss of information. For instance, in the case of an integral183

calculation over an area containing a perfect kink band, the resulting integral WBV will be184

null if the two opposite tilt bands have similar misorientation angles.185

The proportion of dislocations with a [c]-component Burgers vector (that includes dislocations186

with [c] and < c+ a > Burgers vectors, thereafter referred to as [c]-component dislocations)187

in the subgrain boundaries is estimated as the ratio between the WBV c component over188

the Euclidian norm of the WBV (|WBVc|/||WBV||), thereafter called rWBVc. For the189

pixel-scale calculations, a cut-off value was defined in such a way to restrict the analysis to190

sub-structures with a misorientation higher than 0.9◦, to remain slightly above the EBSD191

resolution. This cut-off value transposed to the WBV norm depends on the EBSD step-size192

since the WBV is calculated per unit length (1.4 × 10−3 µm−1 for 5 µm EBSD step size193

and 3.5× 10−4 µm−1 for 20 µm EBSD step size). Subgrain boundaries are distinguished by194

selecting the pixels for which the norm of the WBV is higher than this threshold and lower195

that the upper bound for a subgrain boundary set at 7◦ of misorientation (Chauve et al.,196

2017). The cut-off value is coherent with the limit of accuracy of EBSD data and leads197

to a good agreement with the subgrain boundary segmentation defined based on the local198

misorientation only. By doing so, less that 1% of pixels are selected as ”sub-structures” in199

the non deformed sample and the corresponding values of |WBVc|/||WBV|| are uniformly200

distributed.201

The WBV analyses are associated with classical measurements of the rotation axis of the202

misorientation induced by the subgrain boundary (by making use of absolute orientations203

from EBSD data) together with the orientation of the boundary trace. From this method204
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known as “boundary trace analysis” (Mainprice et al., 1993; Lloyd et al., 1997; Prior et al.,205

2002; Piazolo et al., 2008), the boundary plane can be inferred. These information are used206

as a visualisation tool in figure 2.207

Finally, statistical analyses were performed by using a probability density function that rep-208

resents the ratio between the number of pixels with a WBV norm higher than the threshold209

(defined above) over the total number of pixels. It can be seen, for instance in figure 4,210

that this ratio is small for the low torsion strain experiment. The pixels with a WBV norm211

higher than the threshold are also separated as a function of the nature of the WBV, meaning212

mostly composed of [c]-component dislocations, mostly composed of < a > dislocations, or213

composed of a similar amount of both types of dislocations.214

3. Experimental observations215

We present first detailed observations of a few subgrain boundaries that illustrate the216

techniques used to distinguish < a > from [c]-component Burgers vectors on GND sub-217

structures, and then a global analysis performed over large-scale EBSD maps containing218

hundreds of grains (from the torsion test samples), which aims at evaluating the statistical219

significance of the dislocations with [c]-component Burgers vectors within the substructures.220

Frequently observed subgrain structures in ice deformed by plasticity include “closed” shaped221

subgrain boundaries (SGBs) formed in the vicinity of serrated grain boundaries (Fig. 1), in222

areas where the microstructure is very heterogeneous. These “closed” shaped SGBs were223

shown in (Chauve et al., 2017) to act as precursor of nucleation by strain induced boundary224

migration (SIBM) and bulging. The superposition of the WBV data (projection of the WBV225

on the sample plane and relative contribution of [c]-component dislocations, rWBVc) to the226

trace of the SGBs (Fig. 1) highlights the complexity of the dislocation sub-structures and227

the variability of the contribution of [c]-component Burgers vector dislocations (from almost228

null to almost 1) in the different subgrain boundary segments.229

The ”closed loop” substructure on the left side of figure 1 has been selected for a detailed230

characterization (Fig. 2 and Table 2). It can be separated into three domains with distinct231

WBV orientations. Two of them, domains 1 and 3, have WBV orientations pointing in two232

opposite < m > (< 11̄00 >) axis directions. These two subgrains accommodate a rotation233

around an axis parallel to the boundary plane (along < a > axes) but with opposite rotation234

directions. Such a configuration, characteristic of two tilt-bands with opposite signs, forming235

a kink band, is frequently observed in ice (Montagnat et al., 2011; Piazolo et al., 2015).236

The subgrain boundary in domain 2 is characterized by a boundary plane that is perpen-237

dicular to the ones of the SBGs from domains 1 and 3. However its rotation axis is also238

parallel to an < a > axis and it is contained within the subgrain boundary plane. Subgrain239

segment 3 is therefore also a tilt boundary. The WBVs are, this time, aligned along the [c]240

axis and perpendicular to the rotation axis. This configuration cannot be explained without241

an important contribution of edge dislocations with a [c]-component Burgers vectors. This242

interpretation is confirmed quantitatively by the estimation of the integral WBV in the three243

areas of interest (table 2). The relative contribution of the [c]-component dislocations, which244

is estimated as the ratio rWBV c is shown to dominate in domain 2.245

246

The torsion experiments provide samples deformed in simple shear in the range γ = 0.012247
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200 µm

0 1|WBVc|/||WBV||

x

y

Figure 1: Serrated grain boundary observed in sample CI01. The ratio |WBVc|
||WBV|| (see text) and the WBVs

are plotted for the pixels where ||WBV|| is higher than 1.4× 10−3 µm−1. The red arrows show the in-plane
projections of the WBV direction (above a threshold of 1.4× 10−3 µm−1, EBSD step size 5 µm).

Analyzed Integral WBV µm−2

area WBVa1 WBVa2 WBVa3 WBVc |WBVc|/||WBV||
1 −2.77 1.14 1.64 −0.12 0.03
2 −0.60 0.47 0.13 2.65 0.94
3 1.84 −1.02 −0.82 −0.16 0.06

Table 2: Integral WBV projections over the four non-independent axes of the hexagonal crystal symmetry
and the ratio rWBVc (see Materials and Methods), calculated for the areas of sample CI01 selected in figure
2.

to 1.94, for which EBSD observations reveal a high density of subgrain boundaries (Fig.248

3). For each sample, the local WBV analysis was performed over the entire mapped surface249

(about 20×10 mm2). In figure 3a, data for the most deformed sample are plotted as a function250

of the relative amount of [c]-component dislocations, rWBVc. This analysis highlights the251

high frequency of subgrain boundaries with a high proportion of [c]-component dislocations252

(yellow pixels in figure 3). The [c]-component dislocations are not confined to grain bound-253

ary areas, as some subgrain boundaries in the central part of grains display non-negligible254

contribution of [c]-component dislocations (Fig. 3c).255

Similar analyses were performed on samples deformed up to different finite shear strains.256

The resulting evolution of the relative occurrence of GNDs composed of [c]-component dislo-257

cations with finite strain is presented in figure 4. Although the overall number of pixels with258

a significant WBV magnitude increases significantly with strain, the ratio of substructure259

composed of [c]-component dislocations remains stable. Except for the almost non-deformed260

sample, which shows a higher proportion of [c]-component dislocations, about 65% of the261

pixels belonging to substructures are made of < a > dislocations, whereas the substructures262

containing [c]-component dislocations represent a non-negligible contribution of about 35%263

(substructures with clear [c]-component dislocation dominant are 13%, those including simi-264

lar proportion of < a > and [c]-component dislocations, 22%)265
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boundary trace
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Figure 2: Weighted Burgers Vectors plotted over a zoomed area from the left side of figure 1, sample CI01.
The colorscale gives the relative magnitude of [c]-component dislocations, rWBVc, and the red arrows show
the in-plane projection of the WBV directions (above a threshold of 1.4 × 10−3 µm−1, EBSD step size of
5 µm). ”Boundary plane” refers to ”inferred” boundary plane, see text. Rectangular areas mark the domains
selected for integral WBV calculations (table 2).

8



500 µm

Grain boundaries  (>7°)

Sub-grain boundaries  (1°<θ<7°)
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x

y
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y
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(b)

0 1|WBVc|
||WBV||
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y-axis

[0001] [1210]

[1100]
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g1
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g2 g2

(c)

Figure 3: a) Ratio between the WBV c component over the norm of the full WBV (rWBVc) calculated at
the pixel scale on sample TGI04 deformed in torsion up to γ = 1.94. As EBSD step size is 20 µm, a cut-off
value of 3.5 × 10−4 µm−1 was taken for ||WBV|| below which pixels are not considered in the calculation.
b) Inverse Pole Figure color-coded EBSD image of the microstructure showing subgrain boundaries (in red)
and grain boundaries (in black). c) Four small images to provide a focus on two illustrative cases, with the
legend of respectively a) (left) and b) (right).
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Another important observation is that at first sight, the presence of dislocations with a [c]-

0
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Figure 4: Distribution of pixels with a ||WBV|| higher than a threshold of (3.5 × 10−4 µm−1, EBSD step
size of 20 µm). Evolution with torsion strain of the relative [c] and <a> components over the norm of the
full WBV (|WBVc|/||WBV||)) for four distinct torsion creep tests.

266

component Burgers vector does not seem to be correlated with the orientation of the crystal.267

To further test this point, orientation data at the pixel scale were correlated with the relative268

amplitude of the WBV components. To do so, we selected data from the sample deformed269

by torsion at γ = 0.42 (TGI03), since at this rather low shear strain the macroscopic texture270

remains reasonably weak to provide a wide enough orientation range (Fig. 5).271

As performed in (Grennerat et al., 2012), an adapted Schmid factor, that does not account for272

slip direction, is used to describe the pixel orientation relative to the imposed stress configu-273

ration (S =
√

|σ.c|2 − (c.σ.c)2, where σ is the stress tensor and c is the c-axis orientation).274

The distribution of this Schmid factor (Fig. 5) reveals a slight under representation of orien-275

tation with low Schmid factors, which may slightly bias the statistics. With this limitation in276

mind, figure 5 gives an overview of the relative contributions of the different components of277

the WBV as a function of the Schmid factor, and therefore as a function of the orientation of278

the pixel. First, the density of substructures (evaluated by the density of pixels with a WBV279

norm higher than the threshold) is similar independently of the crystallographic orientation.280

The slight increase with Schmid factor must result from a statistical bias due to different281

number of pixels analysed for each orientation range (see top of Fig. 5). Second, dislocations282

with a [c]-component occur within similar proportions for every orientation. This statistical283

analysis confirms that there is no clear relationship either between local orientation and the284

density of GNDs, or between local orientation and the type of dislocations involved in the285

GND substructures.286

287
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Figure 5: Distribution of the WBV dominant component as a function of the pixel orientation characterised by
its adapted Schmid factor (S =

√

|σ.c|2 − (c.σ.c)2, where σ is the stress tensor and c is the axis orientation),
from the sample TGI03 deformed in torsion up to γ = 0.42. Top: c-axis pole figure and distribution of Schmid
factors. Bottom: Ratio of pixels with ||WBV|| higher than 3.5 × 10−4 µm−1 (EBSD step size of 20 µm).
Each ratio is decomposed in 3 parts showing the dominant component of the WBV.

4. Discussion288

From these results, one important observation can be emphasized. Dislocations in ice,289

more specifically here GNDs, are clearly not composed solely by dislocations with < a >290

Burgers vectors. A non negligible amount of dislocations with a [c] component in their Burg-291

ers vectors contributes to the formation of subgrain boundaries in various configurations292

(boundary conditions, strain levels...) under laboratory conditions.293

Dislocations with a [c] component Burgers vector are theoretically energetically unfavourable,294

and possess a Peierls barrier up to 10 times the one of < a > dislocations (Hondoh, 2000).295

They require therefore a higher level of resolved shear stress to be activated. Previous work296

on ice highlighted the link between local subgrain boundary development and local strain297

and/or stress concentrations based on misorientation measurements associated with full-field298

modeling approach (Montagnat et al., 2011; Piazolo et al., 2015), on direct comparison be-299

tween strain field estimation by Digital Image Correlation and microstructure observations300

(Chauve et al., 2015) and full-field modeling predictions (Grennerat et al., 2012). Based on301

these recent works, we can assume that the combined effect of local redistribution of stress302

due to strain incompatibilities between grains (Duval et al., 1983; Montagnat et al., 2011;303

Piazolo et al., 2015) and the built up of dislocation fields and their associated internal stress304

field (Chevy et al., 2012; Richeton et al., 2017) may produce local stresses that allow the305

activation of non-basal slip systems or the glide of non-basal dislocations, and in particular306

[c]-component dislocations as observed here. The assumed link between local stress con-307

centrations and formation of GNDs is consistent with high-resolution EBSD measurements308
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recently performed on copper which show a correlation between high GND density and high309

intragranular residual stresses, directly inferred from HR-EBSD (Jiang et al., 2015).310

WBVs only capture part of the GNDs, which are, in turn, a fraction of the total disloca-311

tion population. The total contribution of [c]-component dislocations may therefore differ312

from the present estimations. Moreover, the GNDs populations observed on post-morten 2D313

cryo-EBSD data might not be proportional to the population of glissile dislocations, that is,314

representative of the relative activity of the slip systems, which are responsible for deforma-315

tion. However they are responsible for the accommodation of stress heterogeneities through316

their contribution to the formation of the subgrain boundaries. By the association of strain317

measurements by DIC and microstructural observations, Chauve et al. (2015) demonstrated318

that the formation of subgrain boundaries lead to a marked strain redistribution within a319

polycrystal, which in the case of kink bands resulted in shear along the newly formed bound-320

aries. GNDs act significantly during dynamic recrystallization by controlling nucleation by321

SIBM for instance (Piazolo et al., 2015; Chauve et al., 2015). Last but not least, the internal322

stress fields resulting from dislocation fields (Varadhan et al., 2006) can induce the activation323

of mechanisms such as climb and cross-slip (Montagnat et al., 2006).. We therefore expect324

GNDs to play a significant role during deformation at local and large scales.325

326

All micro-macro modelling approaches applied to ice are so far based on drastic assump-327

tions concerning the activated slip systems and on the mechanisms accommodating strain.328

These assumptions are directly projected on the plasticity (or visco-plasticity) laws describ-329

ing the dislocation glide and interactions during deformation. In most homogenization ap-330

proaches (mean or full-field), plasticity is assumed to occur only through dislocation slip331

on at least four independent slip systems, and their interactions are taken into account by332

the critical resolved shear stresses which control the relative activities of the various slip333

systems, and their evolution laws. These laws are generally adjusted based on compari-334

son of the modelled macroscopic mechanical response with experimental results (Castelnau335

et al., 1996, 2008; Suquet et al., 2012). These assumptions led to an unavoidable minimal336

activation of non-basal slip which compensates for the lack of knowledge of accommodating337

mechanisms (climb and cross-slip for instance), and the inability of the models to represent338

them, except for a few attempts (Lebensohn et al., 2010, 2012). The non-basal activity, and339

more specifically the fact that a minimum of pyramidal slip-system activity associated with340

[c] dislocations is always necessary was, until now, not justified by any observations. Most341

of these empirically adjusted parameters were used in further applications with, sometimes,342

limited validation tests (Lebensohn et al., 2009; Montagnat et al., 2011; Grennerat et al.,343

2012; Llorens et al., 2016).344

The fact that we have observed for the first time a non-negligible contribution of [c]-component345

dislocations to the GNDs population in ice polycrystals deformed in the laboratory provides346

new constraints for modeling the deformation of ice. First, it gives a first order justification347

for the introduction of the activity of pyramidal slip that requires [c]-component dislocations348

into crystal plasticity laws. Indeed, Castelnau et al. (2008) and Suquet et al. (2012) both349

highlighted the necessity of a minimum amount of pyramidal slip to correctly simulate the350

behavior of ice polycrystals during transient creep by mean of full-field approaches. Secondly,351

the present observations open the possibility for a direct comparison between model predic-352

tions based on Dislocation Dynamics (Devincre et al., 2008) or Dislocation Field approaches353
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(Taupin et al., 2007, 2008; Richeton et al., 2017) and the actual distribution of < a > and [c]-354

component dislocations in experimentally and naturally deformed ice samples as performed355

in Richeton et al. (2017). Finally, it suggests the necessity to introduce secondary mecha-356

nisms such as climb and cross-slip in the micro-macro approaches just mentioned, that is,357

of simulating the complexity of dislocation interactions and assessing its impact on the me-358

chanical behaviour.359

Only recently attempts have been made to consider the long-range internal stress field asso-360

ciated with dislocation substructures in crystal plasticity models (Taupin et al., 2007, 2008;361

Richeton et al., 2017). These approaches, based on the elastic theory of continuously dis-362

tributed dislocations account for the build up of GNDs and their transport during plasticity363

but they are limited to multi-crystals with few grains (∼ 20) because of numerical costs.364

The validation of these approaches could strongly benefit from an accurate description of the365

nature of GNDs such as the one presented here. They could, in turn, provide constraints on366

the internal stress field favorable for the activation of [c]-component dislocations.367

368

Coupling detailed analyses of dislocation substructures, like the one presented here, with369

such models, will produce a new generation of crystal plasticity laws which, when imple-370

mented in micro-macro approaches coupled with large-scale flow models, will provide more371

accurate estimations of the mechanical response of ice in the extreme conditions encountered372

in natural environments. These large-scale models will be able to accurately represent the373

texture evolution with strain and, hence, to take into account the mechanical anisotropy374

associated with the texture evolution with deformation in ice sheets (Gillet-Chaulet et al.,375

2006). These new plasticity laws will also be able to tackle complex boundary conditions as376

the cyclic loading encountered in extraterrestrial bodies submitted to tidal forcing, as the377

saturnian satellite Enceladus (Shoji et al., 2013).378

379

5. Conclusions380

The present study reveals for the first time the presence of a non-negligible (between 13%381

and 35%) proportion of dislocations with [c]-component Burgers vector within dislocation382

substructures in pure ice deformed in the laboratory at close to the melting temperature.383

The characterization was made possible by the use of Weighted Burgers Vectors (WBV)384

analyses that estimate the nature of geometrically necessary dislocations (GNDs) from ”rou-385

tine” EBSD measurements. This method is an alternative to classical techniques (X-ray386

diffraction, TEM) to identify the Burgers vector components of the GNDs, which has proven387

to be well adapted to the characterization of large, strongly deformed and recrystallized ice388

samples.389

The fraction of dislocations with [c]-component Burgers vector in substructures is similar for390

various strain geometries and levels (compression or torsion creep, low to high strain). As391

[c]-component dislocations are energetically less favourable and possess higher Peierls bar-392

riers than < a > dislocations, they are expected in areas submitted to high local stresses.393

Hence they should play an important role on the dislocation interactions during deforma-394

tion (responsible for local hardening, internal stress field evolution), but also in the dynamic395

recrystallization processes (nucleation and grain boundary migration) that strongly impact396
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microstructure and texture evolution in ice sheets. The present experimental evidence for397

activation of [c]-component dislocations in ice is a first, but essential step for perfecting the398

current crystal plasticity models and constraining the simulation of the role of these disloca-399

tions on the mechanical response of ice. To be able to represent this complexity in the chain400

of modeling tools that leads to the prediction of ice sheet and shelf flow is a step further401

toward an accurate prediction of their evolution in the frame of global climate changes.402

403
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Appendix A. The Weighted Burgers Vector tool575

Dislocations produce local distortions in crystal lattices. When dislocations of different
signs are close together these distortions balance out and are not visible at the scale of mi-
crons. However when significant numbers of dislocations with the same signs are present, op-
tically visible and (with EBSD) measurable variations of lattice orientation are a consequence
the dislocations are then called geometrically necessary dislocations (GNDs). Crystalline ma-
terials generally have large elastic moduli meaning that lattice bending due to elastic stress
is likely to be small; significant curvature generally relates to the presence of GNDs. Nye
(1953) recognized that the lattice curvature can be described by a second rank tensor (now
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named after him), in general non-symmetric so having 9 independent components, and that
this can be directly linked to the densities of GNDs and their line vectors.

αiγ =
∑

N

ρNbNi l
N
γ (A.1)

where (N) indicates the Nth type of dislocation line, and for each type ρ is the density576

(m−2), bi the Burgers vector in crystal coordinates (m) and lγ the unit line vector in sample577

coordinates. As written the first index in α relates to the crystal reference frame and the578

second to sample reference frame and its units are m−1.579

580

The idea is explained concisely in (Sutton and Balluffi, 1995). It provides in principle581

a powerful way of constraining possible GND types from lattice curvature, although there582

is not a unique way of deciding on dislocation types (lines and Burgers vectors) without583

further information or assumptions. Using EBSD data from 2D maps only 3 out of the 9584

components of the tensor can be unambiguously determined without further assumptions,585

but Wheeler et al. (2009) argued that even these three can provide valuable insights into586

possible dislocation types. Specifically the 3 components αi3 (where 3 indicates the sample587

coordinate direction perpendicular to the map) make up a vector related to the Burgers vec-588

tors of dislocations present. It is weighted with regard to the individual dislocation densities589

(through ρ) and the angles the dislocation lines make to the EBSD map (through l3): hence590

Weighted Burgers Vector (WBV). For hexagonal phases such as ice the WBV can indicate591

the presence of vectors with a [c] component. Although the WBV does not record all the592

GNDs present, it cannot contain phantom directions. If it has a significant [c] component593

then at least some of the Burgers vectors of the GNDs must have a [c] component though594

this does not mean they have to be parallel to [c]. Wheeler et al. (2009) give two versions of595

the calculation.596

1. In the differential form, local orientation gradients are used to calculate the WBV.597

Errors are likely to be significant because of error-prone small misorientations, although598

Wheeler et al. (2009) show how they may be mitigated by filtering out the shortest599

WBVs. Adjacent measurement points with misorientations above a threshold value are600

omitted from gradient calculations, so as to exclude high angle boundaries which lack601

organised dislocation substructures. The magnitude and direction of the WBV can be602

displayed on maps in a variety of ways. Given that the shortest WBVs are the most603

error prone, the display may be chosen to show only those above a particular magnitude604

(cf. Fig 3a).605

2. In the integral form, contour integration round the edge of a region on an EBSD map606

gives the net dislocation content of that region, though the spatial distribution of607

dislocations (domains of high or low density) within the region are not constrained.608

The advantage is that errors are lower. This was asserted in (Wheeler et al., 2009)609

on the basis that numerical integration reduces the effects of noise, and has since610

been demonstrated using model EBSD maps for distorted lattices with added noise.611

The method rejects any regions with high angle boundaries intersecting the border,612

using the threshold value mentioned above. The integral and differential methods are613

complementary and are built on the same mathematical foundation (they are linked614

via Stokes theorem).615
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In this contribution we discuss subgrain boundaries (SGBs). As happens in many mate-616

rials, GNDs have moved by recovery into discrete structures. As these are two dimensional617

features, with zero volume, then strictly the dislocation density is infinite. However the inte-618

gral method still gives a rigorous measure of the dislocation content within a region, if that619

region includes a subgrain boundary: Sutton and Balluffi (1995) show how closely the anal-620

ysis of SGBs relates to the analysis of smoothly curved lattices. Hence the direction of the621

integral WBV still carries useful information related to the GNDs in SGBs. We show colour622

coded maps of the magnitude of the differential form of the WBV. When this is calculated,623

numerical differentiation is used. Suppose we have two measurement points with 2.5◦ differ-624

ence in orientation separated by a 5 µm step size, then the calculated orientation gradient625

will be 0.5◦ / µm. This may in reality be a smoothly curved lattice, or relate to a sharp626

2.5◦ SGB passing between the two measurement points the method cannot distinguish such627

possibilities. If it is an SGB then a smaller step size of 2.5 µm would give rise to an apparent628

gradient of 1◦ / µm. Consequently around SGBs the magnitude of the WBV depends on629

step size (and hence should be interpreted with caution) but the direction can still be used630

to constrain GND types.631

The disadvantages of the WBV approach are: it is less precise than calculations using high632

(angular) resolution EBSD (Wallis et al. 2016), it is biased towards dislocation lines inter-633

secting the EBSD map at a high angle, and it does not give a decomposition of the GND634

population into different dislocation types. The latter can be attempted by making particu-635

lar assumptions about the dislocation types present and then making a calculation assuming636

total dislocation energy is minimised. As argued in Wheeler et al. (2009), though, minimis-637

ing energy without taking into account elastic interactions between dislocations (which will638

mean that line energies are not simply additive) may not be an appropriate procedure.639

The advantages of the WBV are: it can be calculated from routinely collected EBSD data,640

in a way free from assumptions except that the elastic strains be small. The integral form641

reduces the propagation of errors inherent in Kikuchi pattern indexing, and can be used to642

analyse both smoothly curved lattices and SGBs, without any assumptions about twist or643

tilt nature. As this contribution shows the WBV approach is sufficient to test the hypothesis644

that dislocations with [c] component Burgers vectors in ice form a significant part of the645

dislocation substructures.646
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