1,605 research outputs found

    Spatio-temporal detection of Kelvin waves in quantum turbulence simulations

    Get PDF
    We present evidence of Kelvin excitations in space-time resolved spectra of numerical simulations of quantum turbulence. Kelvin waves are transverse and circularly polarized waves that propagate along quantized vortices, for which the restitutive force is the tension of the vortex line, and which play an important role in theories of superfluid turbulence. We use the Gross-Pitaevskii equation to model quantum flows, letting an initial array of well-organized vortices develop into a turbulent bundle of intertwined vortex filaments. By achieving high spatial and temporal resolution we are able to calculate space-time resolved mass density and kinetic energy spectra. Evidence of Kelvin and sound waves is clear in both spectra. Identification of the waves allows us to extract the spatial spectrum of Kelvin waves, clarifying their role in the transfer of energ

    The photino sector and a confining potential in a supersymetric Lorentz-symmetry-violating model

    Full text link
    We study the spectrum of the minimal supersymmetric extension of the Carroll-Field-Jackiw model for Electrodynamics with a topological Chern-Simons-like Lorentz-symmetry violating term. We identify a number of independent background fermion condensates, work out the gaugino dispersion relation and propose a photonic effective action to consider aspects of confinement induced by the SUSY background fermion condensates, which also appear to signal Lorentz-symmetry violation in the photino sector of the action. Our calculations of the static potential are carried out within the framework of the gauge-invariant but path-dependent variables formalism which are alternative to the Wilson loop approach. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges.Comment: 11 pages, photino dispersion relation is extended to included the case the photino acquires mass through spontaneous SUSY breakin

    Interaction of colloids with a nematic-isotropic interface

    Full text link
    The Landau-de Gennes free energy is used to calculate the interaction between long cylindrical colloids and the nematic-isotropic (NI) interface. This interaction has two contributions: one is specific of liquid crystals and results from the deformation of the director field close to the particles or to the interface, while the other is generic and results from wetting and surface tension effects. Deep in the nematic phase the director field of long cylindrical colloids, with strong homeotropic anchoring, exhibits two half-integer defect lines. As the colloid moves towards the interface, the director configuration changes through a series of discontinuous transitions, where one or two of the defects are annihilated. In addition, the NI interface bends towards the colloid in order to minimize the elastic free energy in the nematic. In the isotropic phase, the colloid is surrounded by a thin nematic layer that reduces the surface free energy under favorable wetting conditions. The interaction has a well-defined minimum near the interface. In this region the director and interfacial structures are complex and cannot be described analytically. Using the numerical results for the Landau-de Gennes free energy in the harmonic region, we obtained simple scaling laws for the (linear) force on the colloid

    The BTZ black hole as a Lorentz-flat geometry

    Get PDF
    It is shown that 2+1 dimensional anti-de Sitter spacetimes are Lorentz-flat. This means, in particular, that any simply-connected patch of the BTZ black hole solution can be endowed with a Lorentz connection that is locally pure gauge. The result can be naturally extended to a wider class of black hole geometries and point particles in three-dimensional spacetime.Comment: 2 page

    Biología y ecología del calamar Dosidicus gigas (Cephalopoda) en aguas chilenas: una revisión

    Get PDF
    Indexación: Web of Science; Scielo.ABSTRACT. The jumbo squid Dosidicus gigas is the most abundant cephalopod species in the southeastern Pacific Ocean, which supports the biggest cephalopod fishery in the world. Due to its growing economic importance, the population growth and distributional expansion of this squid is being increasingly studied. Nevertheless, some basic features of the biology of D. gigas are still unknown or have been poorly investigated. In this review we summarize the known information regarding the biology and ecology of this species in the southeastern Pacific Ocean; we focus on the Chilean region in order to propose hypotheses and research lines for a better understanding the life history of this organism. Available data on the size structure, reproduction and genetics of D. gigas allows us to propose hypotheses related to the squid's life history traits. Based on the current literature and publications of colleagues, we propose two hypotheses regarding the effect of spatial variation on the life history of D. gigas. Hypothesis 1: Squids mature at large sizes and spawn in oceanic waters with warm temperatures where paralarvae and juveniles develop. Immature squids migrate near shore to feed, grow and mature, and then return to the offshore sites to spawn. Hypothesis 2: Alternatively, juvenile D. gigas in the oceanic zone do not migrate to coastal waters and mature at small sizes compared to individuals living near the coast that mature at larger size and migrate to oceanic waters to spawn. We provide background information about the feeding behavior and parasitism of this species, suggesting that D. gigas is an important trophic link in the southeastern Pacific marine ecosystem. However, more studies on the feeding habits, reproduction and parasite load are needed not only to test hypotheses proposed in this study, but also to advance the overall knowledge of this species.RESUMEN. Dosidicus gigas, es el calamar más abundante en el Pacífico suroriental, manteniendo la mayor pesquería mundial de cefalópodos. Su creciente importancia económica, ha motivado el aumento de estudios asociados al crecimiento de sus poblaciones y su expansión geográfica. Sin embargo, algunas características biológicas básicas de esta especie son desconocidas o escasamente estudiadas. En esta revisión, se resume la información sobre la biología y ecología de esta especie para el Pacífico suroriental y se proponen hipótesis y líneas de investigación para el mejor entendimiento de su historia de vida. Los datos sobre estructura de tamaños, reproducción y aspectos genéticos de la especie, permiten avanzar en las hipótesis relacionadas con la historia de vida de estos rasgos. Hipótesis 1: Los calamares maduran a gran tamaño y desovan en aguas oceánicas con temperaturas cálidas, donde paralarvas y juveniles se desarrollan. Los calamares inmaduros migran hacia la costa para alimentarse, crecer y madurar, y luego vuelven a los sitios en alta mar para desovar. Hipótesis 2: Alternativamente, los juveniles de D. gigas en la zona oceánica no migran a las aguas costeras y maduran pequeños en comparación a los individuos que viven cerca de la costa que maduran a un tamaño más grande y migran a las aguas oceánicas para desovar. Se proponen dos hipótesis acerca de la variación espacial de la historia de vida. Además, se proporciona el marco relativo a la alimentación y parasitismo del calamar, que coloca a D. gigas como un importante nexo trófico en los ecosistemas marinos del Pacífico suroriental. No obstante, se necesitan más estudios relacionados con alimentación, reproducción y carga parasitaria del calamar para poner a prueba las hipótesis propuestas en este trabajo.http://ref.scielo.org/hpft7

    Sistema de controle de horas extras.

    Get PDF
    Editores técnicos: Joseani Mesquita Antunes, Ana Lídia Variani Bonato, Márcia Barrocas Moreira Pimentel

    Aspects of CPT-even Lorentz-symmetry violating physics in a supersymmetric scenario

    Get PDF
    Background fermion condensates in a landscape dominated by global SUSY are reassessed in connection with a scenario where Lorentz symmetry is violated in the bosonic sector (actually, the photon sector) by a CPTCPT-even kFk_F-term. An effective photonic action is discussed that originates from the supersymmetric background fermion condensates. Also, the photino mass emerges in terms of a particular condensate contrary to what happens in the kAFk_{AF}-violation. Finally, the interparticle potential induced by the effective photonic action is investigated and a confining profile is identified.Comment: 14 pages. arXiv admin note: text overlap with arXiv:1102.3777 by other author

    Envisioning and evolving: Future evolution of the concept and the practice of service design

    Get PDF
    ervice Design is evolving from an emerging field, breaking new ground in the design and service research areas, to a more mature stage, developing a set of fundamental concepts, methods and principles that can provide the foundation for its further significance and impact in both research and practice. This paper reflects on the roots and recent evolution of service design in terms of fundamental concepts, methods and outcomes, taking into account the papers in the Envisioning and Evolving track. It considers how the growing interrelation with close fields of service research is introducing useful “contaminations” and reports how the Service perspective is revealing its potential to bring life to technical and entrenched systems. It goes on to argue that design should aim to bring services to life to prove its real, distinguishing value and contribution

    Evolving Lorentzian wormholes supported by phantom matter with constant state parameters

    Full text link
    In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made out of phantom energy. We show that this exotic source can support the existence of evolving wormhole spacetimes. Explicitly, a family of evolving Lorentzian wormholes conformally related to another family of zero-tidal force static wormhole geometries is found in Einstein gravity. Contrary to the standard wormhole approach, where first a convenient geometry is fixed and then the matter distribution is derived, we follow the conventional approach for finding solutions in theoretical cosmology. We derive an analytical evolving wormhole geometry by supposing that the radial tension (which is negative to the radial pressure) and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. At spatial infinity this evolving wormhole, supported by this anisotropic matter, is asymptotically flat, and its slices t=t= constant are spaces of constant curvature. During its evolution the shape of the wormhole expands with constant velocity, i.e without acceleration or deceleration, since the scale factor has strictly a linear evolution.Comment: 9 pages, 2 figures, Accepted for publication in Phys. Rev.
    corecore