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The BTZ black hole as a Lorentz-flat geometry
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It is shown that 2 + 1 dimensional anti-de Sitter spacetimes are Lorentz-flat. This means, in particular, 
that any simply-connected patch of the BTZ black hole solution can be endowed with a Lorentz 
connection that is locally pure gauge. The result can be naturally extended to a wider class of black 
hole geometries and point particles in three-dimensional spacetime.
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(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Since its discovery, the Bañados–Teitelboim–Zanelli (BTZ) black 
hole solution in three-dimensional spacetime [1] has been a source 
of surprise. The BTZ black hole shares all the features of the more 
realistic 3 + 1 counterparts, such as the existence of an event hori-
zon that surrounds the central singularity, its formation by col-
lapsing matter, the emission of Hawking radiation consistent with 
thermodynamics, and the relation between entropy and the area 
of the horizon, among others. On the other hand, the enormous 
simplification resulting from the absence of propagating degrees of 
freedom in 2 + 1 dimensions makes it an ideal laboratory to test 
gravitation theory in a lighter setting [2].

In this note we show that the geometry of this spacetime has 
another exceptional feature: any simply connected patch U of it 
is parallelizable with respect to a Lorentz connection. This means 
that U can be covered with a family of locally inertial frames 
(freely falling observers) so that they can all be obtained by paral-
lel transport from a given one U0, independently of the path taken 
to connect them. The notion of parallelism here is the one relevant 
to the Lorentz group, characterized by the connection one-form 
ωa

b = ωa
bμdxμ . This connection defines the covariant derivative of 

a Lorentz vector va with respect to the Lorentz group as2
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D va = dva + ωa
b vb, (1)

and the corresponding Lorentz curvature is Ra
b := dωa

b + ωa
cω

c
b .

The geometry of the BTZ solution is the quotient of a constant 
negative curvature manifold (AdS3) by an isometry Γk that identi-
fies points along a Killing vector [3],

MBTZ = AdS3/ΓK . (2)

The metric of the spacetime is ds2 = − f 2dt2 + f −2dr2 + r2(Nφdt +
dφ)2, where f 2 = −M +r2/�2 + J 2/(2r)2, and Nφ = − J/(2r2). Here 
M is the mass, J is the angular momentum, and the coordinates 
have the standard ranges, −∞ < t < ∞, 0 < r < ∞, 0 ≤ φ ≤ 2π . 
This is a solution of the Einstein equations obtained from the 
(2 + 1)-dimensional Einstein–Hilbert action with negative cosmo-
logical constant. Varying the action with respect to the metric, the 
field equations describe a manifold of constant negative Riemann 
curvature,

Rαβ
μν = −�−2(δα

μδ
β
ν − δα

ν δ
β
μ

)
. (3)

As is well known, parallel transport of a vector (or a frame) 
in a closed loop produces a rotated vector (or frame) by a mag-
nitude that depends on the total curvature enclosed by the loop. 
Hence, the possibility of covering the region U with a family of 
parallel-transported frames independently of the path in a consis-
tent manner, requires the corresponding curvature to vanish,

Ra
b(x) = 0, ∀x ∈ U . (4)

Since the Lorentz curvature does not make any reference to the 
metric gμν(x), a natural question to ask would be, what is the 
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most general metric consistent with a Lorentz-flat geometry? In 
other words, does Rab = 0 determine, or impose some constraints, 
on the metric of the manifold? In order to answer this question, 
we can start by defining the metric in terms of the local frame 
one-forms (vielbeins), ea(x) = ea

μ(x)dxμ ,

gμν(x) = ηabea
μeb

ν . (5)

The vielbeins are vectors under the Lorentz group acting in the 
tangent space, and their covariant derivative defines the torsion 
two-form,

T a = Dea = dea + ωa
beb, (6)

which is also independent of the metric. However, the covariant 
derivative of the torsion must vanish, because DT a = Ra

beb . So, 
we conclude that a Lorentz-flat spacetime Ra

b = 0 can only admit 
a covariantly constant torsion,

DT a = 0. (7)

Splitting the Lorentz connection into a torsion-free part ω̄a
b and 

the contorsion, κa
b = ωa

b − ω̄a
b , we obtain

T a = κa
beb. (8)

The Lorentz curvature can also be split into a purely metric part 
and torsion-dependent terms,

Ra
b = Ra

b + D̄κa
b + κa

cκ
c

b, (9)

where Ra
b is the curvature for the torsion-free part of the connec-

tion, given by the Riemann tensor as

Rab = 1

2
ea

αeb
βRαβ

μνdxμdxν . (10)

In 2 + 1 dimensions, the condition DT a = 0 can be integrated to

T a = τεa
bcebec, (11)

where εa
bc = ηadεdbc is the Levi-Civita anti-symmetric invariant 

symbol. In (11) τ is a free integration parameter that will allow 
the value of the cosmological constant to take any non-positive 
value. From this last expression, the contorsion can be identified 
as κa

b = −τεa
bcec . Using this expression in (9) yields

Rab = Rab + τ 2eaeb. (12)

In other words, a spacetime with vanishing Lorentz curvature cor-
responds to an anti-de Sitter (τ �= 0) or flat (τ = 0) Riemannian 
geometry, where � = 1/τ is the radius of curvature. The origin of 
the sign in the cosmological constant can be easily traced to the 
Lorentzian signature. In fact, in a Euclidean space, the result (12)
would have produced Rab = τ 2eaeb , which could be recognized as 
a result of the Adams–Hopf theorem [4]: the three-sphere is par-
allelizable, namely, it can be endowed with a globally trivial SO(3)

connection. Equivalently, the statement that AdS3 is Lorentz-flat 
is just the continuation to Lorentzian signature of the Adams–
Hopf result. Since the Adams–Hopf theorem establishes that S7 is 
parallelizable, one should expect that some interesting covariantly 
constant torsion geometries would also exist in AdS7.

Now, since 2 + 1 black holes for any M and J are obtained 
by an identification of AdS3, all of them are locally Lorentz-flat. In 
fact, this feature can also be extended to other locally AdS3 solu-
tions, like the naked singularities obtained by identifications that 
produce a conical singularity [5] and that correspond to the nega-
tive mass spectrum of the BTZ solution, −1 < M < 0.

Other local Lorentz flat black hole solutions can be constructed 
in the presence a locally flat but globally nontrivial gauge connec-
tion. This is the case, for instance in the vacuum sector of some su-
persymmetric Chern–Simons theories that include the U (1) [6,7], 
or SU(2) [8] connections. Those solutions, for particular values 
of the parameters, are configurations admitting globally defined 
Killing spinors and therefore define stable BPS ground states.
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