883 research outputs found

    Lattice dynamics of mixed semiconductors (Be,Zn)Se from first-principles calculations

    Get PDF
    Vibration properties of Zn(1-x)Be(x)Se, a mixed II-VI semiconductor haracterized by a high contrast in elastic properties of its pure constituents, ZnSe and BeSe, are simulated by first-principles calculations of electronic structure, lattice relaxation and frozen phonons. The calculations within the local density approximation has been done with the Siesta method, using norm-conserving pseudopotentials and localized basis functions; the benchmark calculations for pure endsystems were moreover done also by all-electron WIEN2k code. An immediate motivation for the study was to analyze, at the microscopic level, the appearance of anomalous phonon modes early detected in Raman spectra in the intermediate region (20 to 80%) of ZnBe concentration. This was early discussed on the basis of a percolation phenomenon, i.e., the result of the formation of wall-to-wall --Be--Se-- chains throughout the crystal. The presence of such chains was explicitly allowed in our simulation and indeed brought about a softening and splitting off of particular modes, in accordance with experimental observation, due to a relative elongation of Be--Se bonds along the chain as compared to those involving isolated Be atoms. The variation of force constants with interatomic distances shows common trends in relative independence on the short-range order.Comment: 11 pages, 10 figures, to be published in Phys. Rev.

    Using routine meteorological data to derive sky conditions

    No full text
    International audienceSky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC) to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a) cloudless or almost cloudless sky, (b) scattered clouds, (c) mostly cloudy ? high clouds, (d) overcast ? low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow). The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula). The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations

    Quadratic optimal functional quantization of stochastic processes and numerical applications

    Get PDF
    In this paper, we present an overview of the recent developments of functional quantization of stochastic processes, with an emphasis on the quadratic case. Functional quantization is a way to approximate a process, viewed as a Hilbert-valued random variable, using a nearest neighbour projection on a finite codebook. A special emphasis is made on the computational aspects and the numerical applications, in particular the pricing of some path-dependent European options.Comment: 41 page

    Raman spectroscopy, a non-destructive solution to the study of glass and its alteration

    Get PDF
    This paper presents the potential of Raman spectroscopy, a non-destructive technique which can be applied in-situ, for the analyses of glass and their alteration. Recent analytical developments are summarised for different glass composition and practical examples are given. The paper describes how to extract compositional information from the glass, first based on the spectra profile to distinguish rapidly alkali silicate from alkaline-earth alkali silicate and lead alkali silicate glass, then using the spectral decomposition and correlations to extract quantitative data. For alkali silicate glasses, that are most prone to alteration, the spectral characteristics are described to interpret the alteration process (selective leaching or dissolution of the glass) from the Raman spectra of the altered glass. These developments have greatly widened the potential of the technique and supplement well its ability to measure the thickness of the altered layer and identify the crystalline deposits

    Bio-optical properties and radiative energy budgets in fed and unfed scleractinian corals (Pocillopora sp.) during thermal bleaching

    Get PDF
    © 2019 The authors. Corals live in symbiosis with algal dinoflagellates, which can achieve outstanding photo - synthetic energy efficiencies in hospite approaching theo retical limits. However, how such photosynthetic efficiency varies with environmental stress remains poorly known. Using fiber-optic and electrochemical microsensors in combination with variable chlorophyll fluorescence imaging, we investigated the combined effects of thermal stress and active feeding on the radiative energy budget and photosynthetic efficiency of the symbiotic coral Pocillopora sp. At ambient temperature (25°C), the percentage of ab sorbed light energy used for photosynthesis under low irradiance was higher for fed (∼5-6%) compared to unfed corals (4%). Corals from both feeding treatments responded equally to stress from high light ex posure (2400 μmol photons m-2 s-1), exhibiting a de crease in photosynthetic efficiency, down to 0.5-0.6%. Fed corals showed increased resilience to thermal-induced bleaching (loss of symbionts) compared to unfed corals. In addition, while unfed corals decreased their photosynthetic efficiency almost immediately when exposed to thermal stress, fed corals maintained a constant and high photosynthetic efficiency for 5 more days after onset of thermal stress. We conclude that active feeding is beneficial to corals by prolonging coral health and resilience during thermal stress as a result of an overall healthier symbiont population

    Two Contrasting Classes of Nucleolus-Associated Domains in Mouse Fibroblast Heterochromatin [preprint]

    Get PDF
    In interphase eukaryotic cells, almost all heterochromatin is located adjacent to the nucleolus or to the nuclear lamina, thus defining Nucleolus Associated Domains (NADs) and Lamina Associated Domains (LADs), respectively. Here, we determined the first genome-scale map of murine NADs in mouse embryonic fibroblasts (MEFs) via deep sequencing of chromatin associated with purified nucleoli. We developed a Bioconductor package called NADfinder and demonstrated that it identifies NADs more accurately than other peak-calling tools, due to its critical feature of chromosome-level local baseline correction. We detected two distinct classes of NADs. Type I NADs associate frequently with both the nucleolar periphery and with the nuclear lamina, and generally display characteristics of constitutive heterochromatin, including late DNA replication, enrichment of H3K9me3 and little gene expression. In contrast, Type II NADs associate with nucleoli but do not overlap with LADs. Type II NADs tend to replicate earlier, display greater gene expression, and are more often enriched in H3K27me3 than Type I NADs. The nucleolar associations of both classes of NADs were confirmed via DNA-FISH, which also detected Type I but not Type II probes enriched at the nuclear lamina. Interestingly, Type II NADs are enriched in distinct gene classes, notably factors important for differentiation and development. In keeping with this, we observed that a Type II NAD is developmentally regulated, present in MEFs but not in undifferentiated embryonic stem (ES) cells

    Effects of proton versus photon irradiation on (lymph) angiogenic, inflammatory, proliferative and anti-tumor immune responses in head and neck squamous cell carcinoma

    Get PDF
    International audienceThe proximity of organs at risk makes the treatment of head and neck squamous cell carcinoma (HNSCC) challenging by standard radiotherapy. The higher precision in tumor targeting of proton (P) therapy could promote it as the treatment of choice for HNSCC. Besides the physical advantage in dose deposition, few is known about the biological impact of P versus photons (X) in this setting. To investigate the comparative biological effects of P versus X radiation in HNSCC cells, we assessed the relative biological effectiveness (RBE), viability, proliferation and mRNA levels for genes involved in (lymph)angiogenesis, inflammation, proliferation and anti-tumor immunity. These parameters, particularly VEGF-C protein levels and regulations, were documented in freshly irradiated and/or long-term surviving cells receiving low/high-dose, single (SI)/multiple (MI) irradiations with P/X. The RBE was found to be 1.1 Key (lymph)angiogenesis and inflammation genes were downregulated (except for vegf-c) after P and upregulated after X irradiation in MI surviving cells, demonstrating a more favorable profile after P irradiation. Both irradiation types stimulated vegf-c promoter activity in a NF-κB-dependent transcriptional regulation manner, but at a lesser extent after P, as compared to X irradiation, which correlated with mRNA and protein levels. The cells surviving to MI by P or X generated tumors with higher volume, anarchic architecture and increased density of blood vessels. Increased lymphangiogenesis and a transcriptomic analysis in favor of a more aggressive phenotype were observed in tumors generated with X-irradiated cells. Increased detection of lymphatic vessels in relapsed tumors from patients receiving X radiotherapy was consistent with these findings. This study provides new data about the biological advantage of P, as compared to X irradiation. In addition to its physical advantage in dose deposition, P irradiation may help to improve treatment approaches for HNSCC

    Dispersion and collapse in stochastic velocity fields on a cylinder

    Get PDF
    The dynamics of fluid particles on cylindrical manifolds is investigated. The velocity field is obtained by generalizing the isotropic Kraichnan ensemble, and is therefore Gaussian and decorrelated in time. The degree of compressibility is such that when the radius of the cylinder tends to infinity the fluid particles separate in an explosive way. Nevertheless, when the radius is finite the transition probability of the two-particle separation converges to an invariant measure. This behavior is due to the large-scale compressibility generated by the compactification of one dimension of the space

    Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes

    Get PDF
    The study of the interplay between speciation and hybridization is of primary importance in evolutionary biology. Octocorals are ecologically important species whose shallow phylogenetic relationships often remain to be studied. In the Mediterranean Sea, three congeneric octocorals can be observed in sympatry: Eunicella verrucosa, Eunicella cavolini and Eunicella singularis. They display morphological differences and E.singularis hosts photosynthetic Symbiodinium, contrary to the two other species. Two nuclear sequence markers were used to study speciation and gene flow between these species, through network analysis and Approximate Bayesian Computation (ABC). Shared sequences indicated the possibility of hybridization or incomplete lineage sorting. According to ABC, a scenario of gene flow through secondary contact was the best model to explain these results. At the intraspecific level, neither geographical nor ecological isolation corresponded to distinct genetic lineages in E.cavolini. These results are discussed in the light of the potential role of ecology and genetic incompatibilities in the persistence of species limits.French National Research Agency (ANR) program Adacni (ANR) [ANR-12-ADAP-0016]CNRSHubert Curien 'Tassili' program [12MDU853]CCMAR Strategic Plan from Fundacao para a Ciencia e a Tecnologia-FCT [PEst-C/MAR/LA0015/2011,FEDERinfo:eu-repo/semantics/publishedVersio

    Delineation of Culicoides species by morphology and barcode exemplified by three new species of the subgenus Culicoides (Diptera: Ceratopogonidae) from Scandinavia

    Get PDF
    BACKGROUND: Culicoides biting midges (Diptera: Ceratopogonidae) cause biting nuisance to livestock and humans and are vectors of a range of pathogens of medical and veterinary importance. Despite their economic significance, the delineation and identification of species where only morphology is considered, as well as the evolutionary relationships between species within this genus remains problematic. In recent years molecular barcoding has assisted substantially in the identification of biting midges in the multiple entomological survey projects which were initiated in many European countries following the bluetongue outbreak in 2006–2009. These studies revealed potentially new species and “species-complexes” with large genetic and morphological variability. Here we use molecular barcoding, together with morphological analysis, to study subgenus Culicoides Latreille from Scandinavia with focus on three potentially new species. METHODS: Biting midges were collected at various sites in Denmark and Sweden. Culicoides specimens were described by variation of a fragment of their cytochrome c oxidase subunit 1 (COI) gene sequence and wing, palp and antennal characters. RESULTS: It is shown that three new species initially separated by DNA barcoding with mitochondrial COI can be distinguished by morphological characters. In this context a key to Scandinavian subgenus Culicoides using wing and maxillary palp characters is presented. The key is including the three new species Culicoides boyi, Culicoides selandicus and Culicoides kalix. CONCLUSION: Three new species of Culicoides biting midges were identified and could be identified by both molecular and morphological differences. Evaluation of differences between and within taxa of biting midges using COI barcode yielded a rough estimate of species delineation; interspecies differences across Culicoides subgenera approaches 20%, whereas intraspecies differences are below 4% and in most cases below 1%. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-0750-4) contains supplementary material, which is available to authorized users
    corecore