In this paper, we present an overview of the recent developments of
functional quantization of stochastic processes, with an emphasis on the
quadratic case. Functional quantization is a way to approximate a process,
viewed as a Hilbert-valued random variable, using a nearest neighbour
projection on a finite codebook. A special emphasis is made on the
computational aspects and the numerical applications, in particular the pricing
of some path-dependent European options.Comment: 41 page