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Quadratic optimal functional quantization of
stochastic processes and numerical applications

Gilles Pagès1

Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6,
case 188, 4, pl. Jussieu, F-75252 Paris Cedex 5, France. gpa@ccr.jussieu.fr

Summary. In this paper, we present an overview of the recent developments of
functional quantization of stochastic processes, with an emphasis on the quadratic
case. Functional quantization is a way to approximate a process, viewed as a Hilbert-
valued random variable, using a nearest neighbour projection on a finite codebook.
A special emphasis is made on the computational aspects and the numerical appli-
cations, in particular the pricing of some path-dependent European options.

1 Introduction

Functional quantization is a way to discretize the path space of a stochastic
process. It has been extensively investigated since the early 2000’s by several
authors (see among others [29], [31], [12], [9], [30], etc). It first appeared as
a natural extension of the Optimal Vector Quantization theory of (finite-
dimensional) random vectors which finds its origin in the early 1950’s for
signal processing (see [15] or [17]).

Let us consider a Hilbertian setting. One considers a random vector X de-
fined on a probability space (Ω,A, P) taking its values in a separable Hilbert
space (H, (.|.)

H
) (equipped with its natural Borel σ-algebra) and satisfying

E|X |2 < +∞. When H is an Euclidean space (Rd), one speaks about Vector
Quantization. When H is an infinite dimensional space like L2

T
:= L2([0, T ], dt)

(endowed with the usual Hilbertian norm |f |L2
T

:= (
∫ T

0 f2(t)dt)
1
2 ) one speaks

of functional quantization (denoted L2
T

from now on). A (bi-measurable)
stochastic process (Xt)t∈[0,T ] defined on (Ω,A, P) satisfying |X(ω)|L2

T
< +∞

P(dω)-a.s. can always be seen, once possibly modified on a P-negligible set,
as an L2

T
-valued random variable. Although we will focus on the Hilbertian

framework, other choices are possible for H , in particular some more general
Banach settings like Lp([0, T ], dt) or C([0, T ], R) spaces.

This paper is organized as follows: in Sections 2 we introduce quadratic
quantization in a Hilbertian setting. In Section 3, we focus on optimal quanti-
zation, including some extensions to non quadratic quantization. Section 4 is
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devoted to some quantized cubature formulae. Section 5 provides some clas-
sical background on the quantization rate in finite dimension. Section 7 deals
with functional quantizations of Gaussian processes, like the Brownian mo-
tion, with a special emphasis on the numerical aspects. We present here what
is, to our guess, the first large scale numerical optimization of the quadratic
quantization of the Brownian motion. We compare it to the optimal product
quantization, formerly investigated in [44]. In section, we propose a construc-
tive approach to the functional quantization of scalar or multidimensional
diffusions (in the Stratanovich sense). In Section 9, we show how to use func-
tional quantization to price path-dependent options like Asian options (in a
heston stochastic volatility model). We conclude by some recent results show-
ing how to derive universal (often optimal) functional quantization rate from
time regularity of a process in Section 10 and by a few clues in Section 11
about the specific methods that produce some lower bounds (this important
subject as many others like the connections with small deviation theory is not
treated in this numerically oriented overview. As concerns statistical applica-
tions of functional quantization we refer to [53, 54].

Notations. • an ≈ bn means an = O(bn) and bn = O(an); an ∼ bn means
an = bn + o(an).

• If X : (Ω,A, P)→ (H, | . |
H

) (Hilbert space), then ‖X‖2 = (E|X |2
H

)
1
2 .

• ⌊x⌋ denotes the integral part of the real x.

2 What is quadratic functional quantization?

Let (H, ( .|. )
H

) denote a separable Hilbert space. Let X∈ L2
H

(P) i.e. a random
vector X : (Ω,A, P) 7−→ H (H is endowed with its Borel σ-algebra) such that
E |X |2

H
< +∞. An N -quantizer (or N -codebook) is defined as a subset

Γ := {x1, . . . , xN
} ⊂ H

with cardΓ = N . In numerical applications, Γ is also called grid. Then, one
can quantize (or simply discretize) X by q(X) where q : H 7→ Γ is a Borel
function. It is straightforward that

∀ω∈ Ω, |X(ω)− q(X(ω))|
H
≥ d(X(ω), Γ ) = min

1≤i≤N
|X(ω)− xi|H

so that the best pointwise approximation of X is provided by considering for
q a nearest neighbour projection on Γ , denoted Proj

Γ
. Such a projection is

in one-to-one correspondence with the Voronoi partitions (or diagrams) of H
induced by Γ i.e. the Borel partitions of H satisfying

Ci(Γ ) ⊂
{

ξ∈ H : |ξ − xi|H = min
1≤j≤N

|ξ − xj |H
}

= Ci(Γ ), i = 1, . . . , N,
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where Ci(Γ ) denotes the closure of Ci(Γ ) in H (this heavily uses the Hilbert
structure). Then

Proj
Γ
(ξ) :=

N∑

i=1

xi1Ci(Γ )(ξ)

is a nearest neighbour projection on Γ . These projections only differ on the
boundaries of the Voronoi cells Ci(Γ ), i = 1, . . . , N . All Voronoi partitions
have the same boundary contained in the union of the median hyperplanes
defined by the pairs (xi, xj), i 6= j. Figure 2 represents the Voronoi dia-
gram defined by a (random) 10-tuple in R2. Then, one defines a Voronoi

Fig. 1. A 2-dimensional 10-quantizer Γ = {x1, . . . , x10} and its Voronoi diagram.

N -quantization of X by setting for every ω∈ Ω,

X̂Γ (ω) := ProjΓ (X(ω)) =

N∑

i=1

xi1Ci(Γ )(X(ω)).

One clearly has, still for every ω∈ Ω, that

|X(ω)− X̂Γ (ω)|
H

= dist
H

(X(ω), Γ ) = min
1≤i≤N

|X(ω)− xi|H .

The mean (quadratic) quantization error is then defined by

e(Γ, X, H) = ‖X − X̂Γ‖
2

=

√
E

(
min

1≤i≤N
|X − xi|2H

)
. (1)

The distribution of X̂Γ as a random vector is given by the N -tuple (P(X ∈
Ci(Γ )))1≤i≤N of the Voronoi cells. This distribution clearly depends on the
choice of the Voronoi partition as emphasized by the following elementary
situation: if H = R, the distribution of X is given by P

X
= 1

3 (δ0 + δ1/2 + δ1),
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N = 2 and Γ = {0, 1} since 1/2 ∈ ∂C0(Γ )∩∂C1(Γ ). However, if P
X

weights

no hyperplane, the distribution of X̂Γ depends only on Γ .

As concerns terminology, Vector Quantization is concerned with the finite
dimensional case – when dimH < +∞ – and is a rather old story, going
back to the early 1950’s when it was designed in the field of signal processing
and then mainly developed in the community of Information Theory. The
term functional quantization, probably introduced in [41, 29], deals with the
infinite dimensional case including the more general Banach-valued setting.
The term “functional” comes from the fact that a typical infinite dimensional
Hilbert space is the function space H = L2

T
. Then, any (bi-measurable) process

X : ([0, T ]×Ω, Bor([0, T ])⊗A)→ (R, Bor(R)) can be seen as a random vector
taking values in the set of Borel functions on [0, T ]. Furthermore, ((t, ω) 7→
Xt(ω))∈ L2(dt⊗ dP) if and only if (ω 7→ X.(ω))∈ L2

H(P) since

∫

[0,T ]×Ω

X2
t (ω) dt P(dω) =

∫

Ω

P(dω)

∫ T

0

X2
t (ω) dt = E |X.|2L2

T

.

3 Optimal (quadratic) quantization

At this stage we are lead to wonder whether it is possible to design some
optimally fitted grids to a given distribution P

X
i.e. which induce the lowest

possible mean quantization error among all grids of size at most N . This
amounts to the following optimization problem

e
N

(X, H) := inf
Γ⊂H,card(Γ )≤N

e(Γ, X, H). (2)

It is convenient at this stage to make a correspondence between quantizers
of size at most N and N -tuples of HN : to any N -tuple x := (x1, . . . , xN )
corresponds a quantizer Γ := Γ (x) = {xi, i = 1, . . . , N} (of size at most N).
One introduces the quadratic distortion, denoted DX

N
, defined on HN as a

(symmetric) function by

DX
N

: HN −→ R+

(x1, . . . , xN
) 7−→ E

(
min

1≤i≤N
|X − xi|2H

)
.

Note that, combining (1) and the definition of the distortion, shows that

DX
N

(x1, . . . , xN
) = E

(
min

1≤i≤N
|X − xi|2H

)
= E

(
d(X, Γ (x))2

)
= ‖X − X̂Γ (x)‖2

2

so that,



Functional Quantization 5

Fig. 2. Two N-quantizers (and their Voronoi diagram) related to bi-variate normal
distribution N (0; I2) (N = 500); which one is the best?

e
N

(X, H) = inf
(x1,...,x

N
)∈HN

√
DX

N
(x1, . . . , xN

).

The following proposition shows the existence of an optimal N -tuple

x(N,∗) ∈ HN such that e
N

(X, H) =
√

DX
N

(x(N,∗)). The corresponding op-

timal quantizer at level N is denoted Γ (N,∗) := Γ (x(N,∗)). In finite dimension
we refer to [49] (1982) and in infinite dimension to [7] (1988) and [48] (1990);
one may also see [39], [17] and [29]. For recent developments on existence and
pathwise regularity of optimal quantizer see [20].

Proposition 1. (a) The function DX
N

is lower semi-continuous for the prod-
uct weak topology on HN .

(b) The function DX
N

reaches a minimum at a N -tuple x(N,∗) (so that Γ (N,∗)

is an optimal quantizer at level N).

– If card(supp(PX)) ≥ N , the quantizer has full size N (i.e. card(Γ (N,∗)) =
N) and e

N
(X, H) < e

N−1
(X, H).

– If card(supp(PX)) ≤ N , e
N

(X, H) = 0.

Furthermore lim
N

e
N

(X, H) = 0.

(c) Any optimal (Voronoi) quantization at level N , X̂Γ (N,∗)

satisfies

X̂Γ (N,∗)

= E(X |σ(X̂Γ (N,∗)

)) (3)

where σ(X̂Γ (N,∗)

) denotes the σ-algebra generated by X̂Γ (N,∗)

.

(d) Any optimal (quadratic) quantization at level N is a best least square (i.e.
L2(P)) approximation of X among all H-valued random variables taking at
most N values:

e
N

(X, H) = ‖X−X̂Γ (N,∗)‖2 = min{‖X−Y ‖2 , Y : (Ω,A)→ H, card(Y (Ω)) ≤ N}.
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Proof (sketch of): (a) The claim follows from the l.s.c. of ξ 7→ |ξ|
H

for the
weak topology and Fatou’s Lemma.

(b) One proceeds by induction on N . If N = 1, the optimal 1-quantizer is
x(N,∗) = {E X} and e2(X, H) = ‖X − E X‖

2
.

Assume now that an optimal quantizer x(N,∗) = (x
(N,∗)
1 , . . . , x(N,∗)

N
) does

exist at level N .

– If card(supp(P)) ≤ N , then the N + 1-tuple (x(N,∗), x(N,∗)
N

) (among
other possibilities) is also optimal at level N+1 and e

N+1(X, H) = e
N

(X, H) =
0.

– Otherwise, card(supp(P)) ≥ N + 1, hence x(N,∗) has pairwise distinct

components and there exists ξN+1∈ supp(P
X

) \ {x(N,∗)
i , i = 1, . . . , N} 6= ∅.

Then, with obvious notations,

DX
N+1

((x(N,∗), ξ
N+1

)) < DX
N

(x(N,∗)).

Then, the set FN+1 :=
{
x∈ HN+1 |DX

N+1
(x) ≤ DX

N+1
((x(N,∗), ξ

N+1
))
}

is non

empty, weakly closed since DX
N+1

is l.s.c.. Furthermore, it is bounded in HN+1.

Otherwise there would exist a sequence x(m)∈ HN+1 such that |x(m),im
|
H

=
maxi |x(m),i|H → +∞ as m→∞. Then, by Fatou’s Lemma, one checks that

lim inf
m→∞

DX
N+1

(x(m)) ≥ DX
N

(x(N,∗)) > DX
N+1

((x(N,∗), ξ
N+1)).

Consequently FN+1 is weakly compact and the minimum of DX
N+1

on FN+1

is clearly its minimum over the whole space HN+1. In particular

e
N+1(X, H) ≤ DX

N+1
((x(N,∗), ξ

N+1)) < e
N

(X, H).

If card(supp(P)) = N + 1, set x(N+1,∗) = supp(P) (as sets) so that t X =

X̂Γ (N+1,∗)

which implies e
N+1

(X, H) = 0.

To establish that e
N

(X, H) goes to 0, one considers an everywhere dense
sequence (zk)k≥1 in the separable space H . Then, d({z1, . . . , zN

}, X(ω)) goes
to 0 as N → ∞ for every ω ∈ Ω. Furthermore, d({z1, . . . , zN

}, X(ω))2 ≤
|X(ω)−z1|2H ∈ L1(P). One concludes by the Lebesgue dominated convergence
Theorem that DX

N
(z1, . . . , zN) goes to 0 as N →∞.

(c) and (d) Temporarily set X̂∗ := X̂Γ (N,∗)

for convenience. Let Y : (Ω,A)→
H be a random vector taking at most N values. Set Γ := Y (Ω). Since X̂Γ is
a Voronoi quantization of X induced by Γ ,

|X − X̂Γ |
H

= d(X, Γ ) ≤ |X − Y |
H

so that
‖X − X̂Γ ‖

2
≤ ‖X − Y ‖

2
.
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On the other hand, the optimality of Γ (N,∗) implies

‖X − X̂∗‖
2
≤ ‖X − X̂Γ ‖

2
.

Consequently

‖X − X̂∗‖
2
≤ min {‖X − Y ‖

2
, Y : (Ω,A)→ H, card(Y (Ω)) ≤ N} .

The inequality holds as an equality since X̂∗ takes at most N values. Further-
more, considering random vectors of the form Y = g(X̂) (which take at most
as many values as the size of Γ (N,∗)) shows, going back to the very definition

of conditional expectation, that X̂∗ = E(X | X̂∗) P-a.s. ♦

Item (c) introduces a very important notion in (quadratic) quantization.

Definition 1. A quantizer Γ ⊂ H is stationary (or self-consistent) if (there

is a nearest neighbour projection such that X̂Γ = Proj
Γ
(X) satisfying)

X̂Γ = E

(
X | X̂Γ

)
. (4)

Note in particular that any stationary quantization satisfies EX = EX̂Γ .

As shown by Proposition 1(c) any quadratic optimal quantizer at level
N is stationary. Usually, at least when d ≥ 2, there are other stationary
quantizers: indeed, the distortion function DX

N
is | . |

H
-differentiable at N -

quantizers x∈ HN with pairwise distinct components and

∇DX
N

(x) = 2

(∫

Ci(x)

(xi − ξ)P
X
(dξ)

)

1≤i≤N

= 2
(
E(X̂Γ (x) −X)1{X̂Γ(x)=xi}

)
1≤i≤N

.

hence, any critical points of DX
N

is a stationary quantizer.

Remarks and comments. • In fact (see Theorem 4.2, p. 38, [17]), the
Voronoi partitions of Γ (N,∗) always have a PX -negligible boundary so that
(4) holds for any Voronoi diagram induced by Γ .

• The problem of the uniqueness of optimal quantizer (viewed as a set) is
not mentioned in the above proposition. In higher dimension, this essentially
never occurs. In one dimension, uniqueness of the optimal N -quantizer was
first established in [14] with strictly log-concave density function. This was
successively extended in [23] and [55] and lead to the following criterion (for
more general “loss” functions than the square function):

If the distribution of X is absolutely continuous with a log-concave density
function, then, for every N ≥ 1, there exists only one stationary quantizer of
size N , which turns out to be the optimal quantizer at level N .
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More recently, a more geometric approach to uniqueness based on the
Mountain Pass Lemma first developed in [26] and then generalized in [6])
provided a slight extension of the above criterion (in terms of loss functions).

This log-concavity assumption is satisfied by many families of probability
distributions like the uniform distribution on compact intervals, the normal
distributions, the gamma distributions. There are examples of distributions
with a non log-concave density function having a unique optimal quantizer
for every N ≥ 1 (see e.g. the Pareto distribution in [16]). On the other hand
simple examples of scalar distributions having multiple optimal quantizers at
a given level can be found in [17].

• A stationary quantizer can be sub-optimal. This will be emphasized in Sec-
tion 7 for the Brownian motion (but it is also true for finite dimensional
Gaussian random vectors) where some families of sub-optimal quantizers – the
product quantizers designed from the Karhunen-Lov̀e basis – are stationary
quantizers.

• For the uniform distribution over an interval [a, b], there is a closed form
for the optimal quantizer at level N given by Γ (N,∗) = {a + (2k − 1) b−a

N , k =
1, . . . , N}. This N -quantizer is optimal not only in the quadratic case but also
for any Lr-quantization (see a definition further on). In general there is no such
closed form, either in 1 or higher dimension. However, in [16] some semi-closed
forms are obtained for several families of (scalar) distributions including the
exponential and the Pareto distributions: all the optimal quantizers can be
expressed using a single underlying sequence (ak)k≥1 defined by an induction
ak+1 = F (ak).

• In one dimension, as soon as the optimal quantizer at level N is unique (as
a set or as an N -tuple with increasing components), it is generally possible
to compute it as the solution of the stationarity equation (3) either by a zero
search (Newton-Raphson gradient descent) or a fixed point (like the specific
Lloyd I procedure, see [24]) procedure.

• In higher dimension, deterministic optimization methods become intractable
and one uses stochastic procedures to compute optimal quantizers. The main
topic of this paper being functional quantization, we postponed the short
overview on these aspects to Section 7, devoted to the optimal quantization
of the Brownian motion. But it is to be noticed that all efficient optimization
methods rely on the so-called splitting method which increases progressively
the quantization level N . This method is directly inspired by the induction
developed in the proof of claim (b) of Proposition 1 since one designs the
starting value of the optimization procedure at size N + 1 by “merging” the
optimized N -quantizer obtained at level N with one further point of Rd,
usually randomly sampled with respect to an appropriate distribution (see [43]
for a discussion).

• As concerns functional quantization, e.g. H = L2
T
, there is a close connection

between the regularity of optimal (or even stationary) quantizers and that of
t 7→ Xt form [0, T ] into L2(P). Furthermore, as concerns optimal quantizers of
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Gaussian processes, one shows (see [29]) that they belong to the reproducing
space of their covariance operator, e.g. to the Cameron-Martin space H1 =
{
∫ .

0 ḣsds, ḣ∈ L2
T
} when X = W . Other properties of optimal quantization of

Gaussian processes are established in [29].

Extensions to the Lr(P)-quantization of random variables. In this
paper, we focus on the purely quadratic framework (L2

T
and L2(P)-norms),

essentially because it is a natural (and somewhat easier) framework for the
computation of optimized grids for the Brownian motion and for some first
applications (like the pricing of path-dependent options, see section 9). But a
more general and natural framework is to consider the functional quantization
of random vectors taking values in a separable Banach space (E, | . |

E
). Let

X : (Ω,A, P) → (E, | |
E
), such that E |X |r

E
< +∞ for some r ≥ 1 (the case

0 < r < 1 can also be taken in consideration).
The N -level (Lr(P), | . |

E
)-quantization problem for X∈ Lr

E
(P) reads

e
N,r

(X, E) := inf
{
‖X − X̂Γ‖

r
, Γ ⊂ E, card(Γ ) ≤ N

}
.

The main examples for (E, | . |
E
) are the non-Euclidean norms on Rd, the

functional spaces Lp
T
(µ) := Lp([0, T ], µ(dt)), 1 ≤ p ≤ ∞, equipped with its

usual norm, (E, | . |
E
) = (C([0, T ]), ‖ . ‖sup), etc. As concerns, the existence

of an optimal quantizer, it holds true for reflexive Banach spaces (see Pärna
(90)) and E = L1

T
, but otherwise it may fail even when N = 1 (see [20]).

In finite dimension, the Euclidean feature is not crucial (see [17]). In the
functional setting, many results originally obtained in a Hilbert setting have
been extended to the Banach setting either for existence or regularity results
(see [20]) or for rates see [10], [12], [30], [33].

4 Cubature formulae: conditional expectation and
numerical integration

Let F : H −→ R be a continuous functional (with respect to the norm | . |
H

)
and let Γ ⊂ H be an N -quantizer. It is natural to approximate E(F (X)) by

E(F (X̂Γ )). This quantity E(F (X̂Γ )) is simply the finite weighted sum

E (F (X̂Γ )) =

N∑

i=1

F (xi)P(X̂Γ = xi).

Numerical computation of E (F (X̂Γ )) is possible as soon as F (ξ) can be com-

puted at any ξ∈ H and the distribution (P(X̂ = xi))1≤i≤N of X̂Γ is known.

The induced quantization error ‖X − X̂Γ ‖2 is used to control the error (see
below). These quantities related to the quantizer Γ are also called companion
parameters.

Likewise, one can consider a priori the σ(X̂Γ )-measurable random variable

F (X̂Γ ) as a good approximation of the conditional expectation E(F (X) | X̂Γ ).
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4.1 Lipschitz functionals

Assume that the functional F is Lipschitz continuous on H . Then

∣∣∣E(F (X) | X̂Γ )− F (X̂Γ )
∣∣∣ ≤ [F ]

Lip
E(|X − X̂Γ | | X̂Γ )

so that, for every real exponent r ≥ 1,

‖E(F (X) | X̂Γ )− F (X̂Γ )‖
r
≤ [F ]

Lip
‖X − X̂Γ‖

r

(where we applied conditional Jensen inequality to the convex function u 7→
ur). In particular, using that E F (X) = E(E(F (X) | X̂Γ )), one derives (with
r = 1) that

∣∣∣E F (X)− E F (X̂Γ )
∣∣∣ ≤ ‖E(F (X) | X̂Γ )− F (X̂Γ )‖

1

≤ [F ]
Lip
‖X − X̂Γ‖

1
.

Finally, using the monotony of the Lr(P)-norms as a function of r yields

∣∣∣E F (X)− E F (X̂Γ )
∣∣∣ ≤ [F ]Lip‖X − X̂Γ ‖1 ≤ [F ]Lip‖X − X̂Γ ‖2 . (5)

In fact, considering the Lipschitz functional F (ξ) := d(ξ, Γ ), shows that

‖X − X̂Γ ‖1 = sup
[F ]

Lip
≤1

∣∣∣E F (X)− E F (X̂Γ )
∣∣∣ . (6)

The Lipschitz functionals making up a characterizing family for the weak
convergence of probability measures on H , one derives that, for any sequence

of N -quantizers Γ N satisfying ‖X − X̂Γ N‖
1
→ 0 as N →∞,

∑

1≤i≤N

P(X̂Γ N

= xN
i ) δxN

i

(H)
=⇒ P

X

where
(H)
=⇒ denotes the weak convergence of probability measures on (H, | . |H).

4.2 Differentiable functionals with Lipschitz differentials

Assume now that F is differentiable on H , with a Lipschitz continuous differ-
ential DF , and that the quantizer Γ is stationary (see Equation (4)).

A Taylor expansion yields

∣∣∣F (X)− F (X̂Γ )−DF (X̂Γ ).(X − X̂Γ )
∣∣∣ ≤ [DF ]

Lip
|X − X̂Γ |2.

Taking conditional expectation given X̂Γ yields
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∣∣∣E(F (X) | X̂Γ)−F (X̂Γ)−E

(
DF (X̂Γ).(X−X̂Γ) | X̂Γ

)∣∣∣ ≤ [DF ]LipE(|X−X̂Γ |2| X̂Γ).

Now, using that the random variable DF (X̂Γ ) is σ(X̂Γ )-measurable, one has

E

(
DF (X̂Γ ).(X − X̂Γ )

)
= E

(
DF (X̂Γ ).E(X − X̂Γ | X̂Γ )

)
= 0

so that
∣∣∣E(F (X) | X̂Γ )− F (X̂Γ )

∣∣∣ ≤ [DF ]
Lip

E

(
|X − X̂Γ |2 | X̂Γ

)
.

Then, for every real exponent r ≥ 1,

∥∥∥E(F (X) | X̂Γ )− F (X̂Γ )
∥∥∥

r

≤ [DF ]
Lip
‖X − X̂Γ ‖2

2r
.

In particular, when r = 1, one derives like in the former setting

∣∣∣EF (X)− EF (X̂Γ )
∣∣∣ ≤ [DF ]

Lip
‖X − X̂Γ ‖2

2
. (7)

In fact, the above inequality holds provided F is C1 with Lipschitz differential
on every Voronoi cell Ci(Γ ). A similar characterization to (6) based on these
functionals could be established.

Some variant of these cubature formulae can be found in [43] or [21] for
functions or functionals F having only some local Lipschitz regularity.

4.3 Quantized approximation of E(F (X) | Y )

Let X and Y be two H-valued random vector defined on the same proba-
bility space (Ω,A, P) and F : H → R be a Borel functional. The natural
idea is to approximate E(F (X) |Y ) by the quantized conditional expectation

E(F (X̂) | Ŷ ) where X̂ and Ŷ are quantizations of X and Y respectively.
Let ϕ

F
: H → R be a (Borel) version of the conditional expectation i.e.

satisfying
E(F (X) |Y ) = ϕ

F
(Y ).

Usually, no closed form is available for the function ϕ
F

but some regularity
property can be established, especially in a (Feller) Markovian framework.
Thus assume that both F and ϕ

F
are Lipschitz continuous with Lipschitz

coefficients [F ]Lip and [ϕ
F
]Lip. Then

E(F (X) |Y )−E(F (X̂) | Ŷ ) = E(F (X) |Y )−E(F (X) | Ŷ )+E(F (X)−F (X̂) | Ŷ ).

Hence, using that Ŷ is σ(Y )-measurable and that conditional expectation is
an L2-contraction,
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‖E(F (X) |Y )− E(F (X) | Ŷ )‖
2

= ‖E(F (X)|Y )− E(E(F (X̂)|Y )|Ŷ )‖
2

≤ ‖ϕ
F
(Y )− E(F (X)|Ŷ )‖

2

= ‖ϕ
F
(Y )− E(ϕ

F
(Y )|Ŷ )‖

2

≤ ‖ϕ
F
(Y )− ϕ

F
(Ŷ )‖

2
.

The last inequality follows form the definition of conditional expectation given
Ŷ as the best quadratic approximation among σ(Ŷ )-measurable random vari-

ables. On the other hand, still using that E( . |σ(Ŷ )) is an L2-contraction and
this time that F is Lipschitz continuous yields

‖E(F (X)− F (X̂) | Ŷ )‖2 ≤ ‖F (X)− F (X̂)‖2 ≤ [F ]Lip‖X − X̂‖2 .

Finally,

‖E(F (X) |Y )− E(F (X̂) | Ŷ )‖
2
≤ [F ]Lip‖X − X̂‖

2
+ [ϕ

F
]Lip‖Y − Ŷ ‖

2
.

In the non-quadratic case the above inequality remains valid provided
[ϕ

F
]Lip is replaced by 2[ϕ

F
]Lip.

5 Vector quantization rate (H = R
d)

The fact that e
N

(X, Rd) is a non-increasing sequence that goes to 0 as N
goes to ∞ is a rather simple result established in Proposition 1. Its rate of
convergence to 0 is a much more challenging problem. An answer is provided
by the so-called Zador Theorem stated below.

This theorem was first stated and established for distributions with com-
pact supports by Zador (see [57, 58]). Then a first extension to general prob-
ability distributions on Rd is developed in [5]. The first mathematically rigor-
ous proof can be found in [17], and relies on a random quantization argument
(Pierce Lemma).

Theorem 1. (a) Sharp rate. Let r > 0 and X ∈ Lr+η(P) for some η > 0.

Let P
X

(dξ) = ϕ(ξ) dξ
⊥
+ ν(dξ) be the canonical decomposition of the distribu-

tion of X (ν and the Lebesgue measure are singular). Then (if ϕ 6≡ 0),

e
N,r

(X, Rd) ∼ J̃r,d ×
(∫

Rd

ϕ
d

d+r (u) du

) 1
d
+ 1

r

×N− 1
d as N → +∞. (8)

where J̃r,d∈ (0,∞).

(b) Non asymptotic upper bound (see e.g. [33]). Let d ≥ 1. There exists
Cd,r,η∈(0,∞) such that, for every Rd-valued random vector X,

∀N ≥ 1, e
N,r

(X, Rd) ≤ Cd,r,η‖X‖r+ηN
− 1

d .
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Remarks. • The real constant J̃r,d clearly corresponds to the case of the
uniform distribution over the unit hypercube [0, 1]d for which the slightly
more precise statement holds

lim
N

N
1
d e

N,r
(X, Rd) = inf

N
N

1
d e

N,r
(X, Rd) = J̃r,d.

The proof is based on a self-similarity argument. The value of J̃r,d depends
on the reference norm on R

d. When d = 1, elementary computations show
that J̃r,1 = (r + 1)−

1
r /2. When d = 2, with the canonical Euclidean norm,

one shows (see [37] for a proof, see also [17]) that J̃2,d =
√

5
18

√
3
. Its exact

value is unknown for d ≥ 3 but, still for the canonical Euclidean norm, one
has (see [17]) using some random quantization arguments,

J̃2,d ∼
√

d

2πe
≈
√

d

17, 08
as d→ +∞.

• When ϕ ≡ 0 the distribution of X is purely singular. The rate (8) still

holds in the sense that limN N
1
d e

r,N
(X, Rd) = 0. Consequently, this is not

the right asymptotics. The quantization problem for singular measures (like
uniform distribution on fractal compact sets) has been extensively investigated
by several authors, leading to the definition of a quantization dimension in
connection with the rate of convergence of the quantization error on these
sets. For more details we refer to [17, 18] and the references therein.

• A more naive way to quantize the uniform distribution on the unit hypercube
is to proceed by product quantization i.e. by quantizing the marginals of the
uniform distribution. If N = md, m ≥ 1, one easily proves that the best
quadratic product quantizer (for the canonical Euclidean norm on R

d) is the
“midpoint square grid”

Γ sq,N =

(
2i1 − 1

2m
, . . . ,

2id − 1

2m

)

1≤i1,...,id≤m

which induces a quadratic quantization error equal to

√
d

12
×N− 1

d .

Consequently, product quantizers are still rate optimal in every dimension d.
Moreover, note that the ratio of these two rates remains bounded as d ↑ ∞.

6 Optimal quantization and QMC

The principle of Quasi-Monte Carlo method (QMC) is to approximate the
integral of a function f : [0, 1]d → R with respect to the uniform distribution
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on [0, 1]d, i.e.

∫

[0,1]d
f dλd =

∫

[0,1]d
f(ξ1, . . . , ξd)dξ1 · · · dξd (λd denotes the

Lebesgue measure on [0, 1]d), by the uniformly weighted sum

1

N

N∑

k=1

f(xk)

of values of f at the points of a so-called low discrepancy N -tuple (x1, . . . , xN
)

(or set). This N -tuple can the first N terms of an infinite sequence.
If f has finite variations denoted V (f) – either in the measure sense (see [4,

47]) or in the Hardy and Krause sense (see [38] p.19) – the Koksma-Hlawka
inequality provides an upper bound for the integration error induced by this
method, namely

∣∣∣∣∣
1

N

N∑

k=1

f(xk)−
∫

[0,1]d
f dλd

∣∣∣∣∣ ≤ V (f)Disc∗
N

(x1, . . . , xN
)

where

Disc∗
N

(x1, . . . , xN
) := sup

y∈[0,1]d

∣∣∣∣∣
1

N

N∑

k=1

1{xk∈[[0,y]]} − λd([[0, y]])

∣∣∣∣∣

(with [[0, y]] =
∏d

k=1[0, yi], y = (y1, . . . , yd) ∈ [0, 1]d). The error modu-
lus Disc∗

N
(x1, . . . , xN

) denotes the discrepancy at the origin of the N -tuple

(x1, . . . , xN ). For every N ≥ 1, there exists [0, 1]d-valued N -tuples x(N) such
that

Disc∗
N

(x(N)) ≤ Cd
(log N)d−1

N
, (9)

where Cd ∈ (0,∞) is a real constant only depending on d. This result can
be proved using the so-called Hammersely procedure (see e.g. [38], p.31).
When x(N) = (x1, . . . , xN

) is made of the first N terms of a [0, 1]d-valued

sequence (xk)k≥1, then the above upper bound has be replaced by C′
d

(log N)d

N
(C′

d∈ (0,∞)). Such a sequence x = (xk)k≥1 is said to be a sequence with low
discrepancy (see [38] an the references therein for a comprehensive theoretical
overview, but also [4, 47] for examples supported by numerical tests). When
one only has Disc∗

N
(x1, . . . , xN

) → 0 as N → ∞, the sequence is said to be
uniformly distributed in [0, 1]d.

It is widely shared by QMC specialists that these rates are (in some sense)
optimal although this remains a conjecture except when d = 1. To be precise
what is known and what is conjectured is the following:

– Any [0, 1]d-valued N -tuple x(N) satisfies D∗
N (x(N)) ≥ BdN

−1(log N)β(d)

where β(d) = d−1
2 if d ≥ 2 (see [52] and also [38] and the references therein),

β(1) = 0 and Bd > 0 is a real constant only depending on d; the conjecture is
that β(d) = d− 1.
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– Any [0, 1]d-valued sequence (xk)k≥1 satisfies D∗
N(x(N)) ≥ BdN

−1(log N)β′(d)

for infinitely many N , where β′(d) = d
2 if d ≥ 2 and β′(1) = 1 and B′

d > 0
is a real constant only depending on d; the conjecture is that β(d) = d. This
follows from the result for N -tuple by the Hammersley procedure (see e.g. [4]).

Furthermore, as concerns the use of Koksma-Hlawka inequality as an error
bound for QMC numerical integration, the different notions of finite variation
(which are closely connected) all become more and more restrictive – and
subsequently less and less “natural” as a regularity property of functions –
when the dimension d increases. Thus the Lipschitz continuous function f
defined by f(ξ1, ξ2, ξ3) := (ξ1 + ξ2 + ξ3) ∧ 1 has infinite variation on [0, 1]3.

When applying Quasi-Monte Carlo approximation of integrals with “stan-
dard” continuous functions on [0, 1]d, the best known error bound, due to
Proinov, is given by the following theorem.

Theorem 2. (Proinov [50]) (a) Assume Rd is equipped with the ℓ∞-norm
|(u1, . . . , ud)|∞ := max1≤i≤d |ui|. Let (x1, . . . , xN

)∈ ([0, 1]d)N . For every con-
tinuous function f : [0, 1]d → R,

∣∣∣∣∣

∫

[0,1]d
f(u)du− 1

N

N∑

k=1

f(xk)

∣∣∣∣∣ ≤ Kd ωf ((Disc∗
N

(x1, . . . , xN
))

1
d )

where ωf (δ) := supx,y∈[0,1]d,|x−y|∞≤δ |f(x) − f(y)|, δ ∈ (0, 1), is the uniform
continuity modulus of f (with respect to the ℓ∞-norm) and Cd ∈ (0,∞) is a
universal constant only depending on d.

(b) If d = 1, Kd = 1 and if d ≥ 2, Kd∈ [1, 4].

Remark. Note that if f is Lipschitz continuous, then ωf (δ) = [f ]Lipδ where
[f ]

Lip
denotes the Lipschitz coefficient of f (with respect to the ℓ∞-norm).

First, this result emphasizes that low discrepancy sequences or sets do
suffer from the curse of dimensionality when a QMC approximation is imple-
mented on functions having a “natural” regularity like Lipschitz continuity.

One also derives from this theorem an inequality between (L1(P), ℓ∞)-
quantization error of the uniform distribution U([0, 1]d) and the discrepancy
at the origin of a N -tuple (x1, . . . , xN

), namely

‖ |U − Û{x1,...,x
N
}|ℓ∞‖1 ≤ Kd(Disc∗

N
(x1, . . . , xN

))
1
d

since the function ξ 7→ min1≤k≤N |xk − ξ|
∞

is clearly ℓ∞-Lipschitz contin-
uous with Lipschitz coefficient 1. The inequality also follows from the char-
acterization established in (6) (which is clearly still true for non Euclidean
norms). Then one may derive some bounds for Euclidean norms (and in fact
any norms) on Rd (probably not sharp in terms of constant) since all the
norms are strongly equivalent. However the bounds for optimal quantization
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error derived from Zador’s Theorem (O(N− 1
d )) and those for low discrepancy

sets (see (9)) suggest that overall, optimal quantization provides lower error
bounds for numerical integration of Lipschitz functions than low discrepancy
sets, at least for for generic values of N . (However, standard computations
show that for midpoint square grids (with N = md points) both quantization

errors and discrepancy behave like 1
m = N− 1

d ).

7 Optimal quadratic functional quantization of Gaussian
processes

Optimal quadratic functional quantization of Gaussian processes is closely
related to their so-called Karhunen-Loève expansion which can be seen in some
sense as some infinite dimensional Principal Component Analysis (PCA) of a
(Gaussian) process. Before stating a general result for Gaussian processes, we
start by the standard Brownian motion: it is the most important example in
view of (numerical) applications and for this process, everything can be made
explicit.

7.1 Brownian motion

One considers the Hilbert space H = L2
T

:= L2([0, T ], dt), (f |g)
2

=

∫ T

0

f(t)g(t)dt,

|f |L2
T

=
√

(f |f)2 . The covariance operator C
W

of the Brownian motion

W = (Wt)t∈[0,T ] is defined on L2
T

by

C
W

(f) := E ((f, W )
2
W ) =

(
t 7→

∫ T

0

(s ∧ t)f(s)ds

)
.

It is a symmetric positive trace class operator which can be diagonalized in
the so-called Karhunen-Loève (K-L) orthonormal basis (eW

n )n≥1 of L2
T
, with

eigenvalues (λn)n≥1, given by

eW
n (t) =

√
2

T
sin

(
π(n− 1

2
)

t

T

)
, λn =

(
T

π(n− 1
2 )

)2

, n ≥ 1.

This classical result can be established as a simple exercise by solving the
functional equation C

W
(f) = λf . In particular, one can expand W itself on

this basis so that

W
L2

T=
∑

n≥1

(W |eW
n )2 eW

n .

Now, the orthonormality of the (K-L) basis implies, using Fubini’s Theroem,
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E((W |eW
k )

2
(W |eW

ℓ )
2
) = (eW

k |CW
(eW

ℓ ))
2

= λℓδkℓ

where δkℓ denotes the Kronecker symbol. Hence the Gaussian sequence
((W |eW

n )
2
)n≥1 is pairwise non-correlated which implies that these random

variables are independent. The above identity also implies that Var((W |eW
n )2) =

λn. Finally this shows that

W
L2

T=
∑

n≥1

√
λn ξn eW

n (10)

where ξn := (W |eW
n )

2
/
√

λn, n ≥ 1, is an i.i.d. sequence of N (0; 1)-distributed
random variables. Furthermore, this K-L expansion converges in a much
stronger sense since supt∈[0,T ] |Wt −

∑n
k=1

√
λkξkeW

k (t)| → 0 P-a.s. and

‖ sup
[0,T ]

|Wt −
∑

1≤k≤n

√
λkξkeW

k (t)|‖
2

= O
(√

log n/n
)

(see e.g. [32]). Similar results (with various rates) hold true for a wide class
of Gaussian processes expanded on “admissible” basis (see e.g. [34]).

Theorem 3. ([29] (2002) and [30] (2003)) Let Γ N , N ≥ 1, be a sequence of
optimal N -quantizers for W .

(a) For every N ≥ 1, span(Γ N ) = span{eW
1 , . . . , eW

d(N)} with d(N) =

Ω(log N). Furthermore ŴΓ N

and W − ŴΓ N

are independent.

(b) e
N

(W, L2
T
) = ‖W − ŴΓ N ‖

2
∼ T
√

2

π

1√
log N

as N →∞.

Remark. • The fact, confirmed by numerical experiments (see Section 7.3
Figure 7.3), that d(N) ∼ log N holds as a conjecture.

• Denoting Π
d

the orthogonal projection on span{eW
1 , . . . , eW

d }, one derives

from (a) that ŴΓ N

= ̂Π
d(N)

(W )
ΓN

(optimal quantization at level N) and

‖W − ŴΓ N‖2
2

= ‖Πd(N)(W )− ̂Π
d(N)

(W )
ΓN ‖2

2
+ ‖W −Πd(N)(W )‖2

2

= eN

(
Zd(N), R

d(N)
)2

+
∑

n≥d(N)+1

λn

where Zd(N)
d
= Πd(N)(W ) ∼

d(N)⊗

k=1

N (0; λk).

7.2 Centered Gaussian processes

The above Theorem 3 devoted to the standard Brownian motion is a particular
case of a more general theorem which holds for a wide class of Gaussian
processes
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Theorem 4. ([29] (2002) and [30] (2004)) Let X = (Xt)t∈[0,T ] be a Gaus-
sian process with K-L eigensystem (λX

n , eX
n )n≥1 (with λ1 ≥ λ2 ≥ . . . is non-

increasing). Let Γ N , N ≥ 1, be a sequence of quadratic optimal N -quantizers
for X. Assume

λX
n ∼

κ

nb
as n→∞ (b > 1).

(a) span(Γ N ) = span{eX
1 , . . . , eX

dX(N)} and dX(N) = Ω(log N).

(b) e
N

(X, L2
T
) = ‖X − X̂Γ N‖

2
∼ √κ

√
bb(b− 1)−1 (2 log N)−

b−1
2 .

Remarks. • The above result admits an extension to the case λX
n ∼ ϕ(n) as

n →∞ with ϕ regularly varying, index −b ≤ −1 (see [30]). In [29], upper or
lower bounds are also established when

(λX
n ≤ ϕ(n), n ≥ 1) or (λX

n ≥ ϕ(n), n ≥ 1).

• The sharp asymptotics dX(N) ∼ 2
b log N holds as a conjecture.

Applications to classical (centered) Gaussian processes.

• Brownian bridge: Xt := Wt− t
T WT , t∈ [0, T ] and eX

n (t) =
√

2/T sin
(
πn t

T

)
,

λn =
(

T
πn

)2
, so that e

N
(X, L2

T
) ∼ T

√
2

π (log N)−
1
2 .

• Fractional Brownian motion with Hurst constant H∈ (0, 1)

eN(WH , L2
T
) ∼ T H+ 1

2 c(H)(log N)−H

where c(H) =
(

Γ (2H) sin(πH)(1+2H)
π

) 1
2( 1+2H

2π

)H
and Γ (t) denotes the Gamma

function at t > 0.

• Some further explicit sharp rates can be derived from the above theorem
for other classes of Gaussian stochastic processes (see [30], 2004) like the
fractional Ornstein-Uhlenbeck processes, the Gaussian diffusions, a wide class
Gaussian stationary processes (the quantization rate is derived from the high
frequency asymptotics of its spectral density, assumed to be square integrable
on the real line), for the m-folded integrated Brownian motion, the fractional
Brownian sheet, etc.

• Of course some upper bounds can be derived for some even wider classes of
processes, based on the above first remark (see e.g. [29], 2002).

Extensions to r, p 6= 2 When the processes have some self-similarity properties,
it is possible to obtain some sharp rates in the non purely quadratic case: this
has been done for fractional Brownian motion in [12] using some quite different
techniques in which self-similarity properties plays there a crucial role. It leads
to the following sharp rates, for p∈ [1, +∞] and r∈ (0,∞)

e
N,r

(WH , Lp
T
) ∼ T H+ 1

2 c(r, H)(log N)−H , c(r, H)∈ (0, +∞).
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7.3 Numerical optimization of quadratic functional quantization

Thanks to the scaling property of Brownian motion, one may focus on the
normalized case T = 1. The numerical approach to optimal quantization of
the Brownian motion is essentially based on Theorem 3 and the remark that
follows: indeed these results show that quadratic optimal functional quanti-
zation of a centered Gaussian process reduces to a finite dimensional optimal
quantization problem for a Gaussian distribution with a diagonal covariance
structure. Namely the optimization problem at level N reads

(ON ) ≡





e
N

(W, L2
T
)2 := e

N
(Zd(N), R

d(N))2 +
∑

k≥d(N)+1

λk

where Zd(N)
d
=

d(N)⊗

k=1

N (0, λk).

Moreover, if βN := {βN
1 , . . . , βN

N } denotes an optimal N -quantizer of Zd(N),
then, the optimal N -quantizer Γ N of W reads Γ N = {xN

1 , . . . , xN
N} with

xN
i (t) =

∑

1≤ℓ≤d(N)

(βN
i )ℓeW

ℓ (t), i = 1, . . . , N. (11)

The good news is that (ON ) is in fact a finite dimensional quantization
optimization problem for each N ≥ 1. The bad news is that the problem is
somewhat ill conditioned since the decrease of the eigenvalues of W is very
steep for small values of n: λ1 = 0.40528 . . ., λ2 = 0.04503 . . . ≈ λ1/10. This is
probably one reason for which former attempts to produce good quantization
of the Brownian motion first focused on other kinds of quantizers like scalar
product quantizers (see [44] and Section 7.4 below) or d-dimensional block
product quantizations (see [56] and [35]).

Optimization of the (quadratic) quantization of Rd-valued random vector
has been extensively investigated since the early 1950’s, first in 1-dimension,
then in higher dimension when the cost of numerical Monte Carlo simula-
tion was drastically cut down (see [15]). Recent application of optimal vector
quantization to numerics turned out to be much more demanding in terms
of accuracy. In that direction, one may cite [43], [36] (mainly focused on nu-
merical optimization of the quadratic quantization of normal distributions).
To apply the methods developed in these papers, it is more convenient to
rewrite our optimization problem with respect to the standard d-dimensional
distribution N (0; Id) by simply considering the Euclidean norm derived from
the covariance matrix Diag(λ1, . . . , λd(N)) i.e.

(ON )⇔





N -optimal quantization of

d(N)⊗

k=1

N (0, 1)

for the covariance norm |(z1, . . . , zd(N))|2 =
∑d(N)

k=1 λkz2
k.
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The main point is of course that the dimension d(N) is unknown. However
(see Figure 7.3), one clearly verifies on small values of N that the conjecture
(d(N) ∼ log N) is most likely true. Then for higher values of N one relies
on it to shift from one dimension to another following the rule d(N) = d,
N ∈ {ed, . . . , ed+1 − 1}.

A toolbox for quantization optimization: a short overview

Here is a short overview of stochastic optimization methods to compute opti-
mal or at least locally optimal quantizers in finite dimension. For more details

we refer to [43] and the references therein. Let Z
d
= N (0; Id).

Competitive Learning Vector Quantization (CLV Q). This procedure is a re-
cursive stochastic approximation gradient descent based on the integral rep-
resentation of the gradient ∇DZ

N (x), x ∈ Hn (temporarily coming back to
N -tuple notation) of the distortion as the expectation of a local gradient i.e.

∀xN ∈ HN , ∇DZ
N (xN ) = E(∇DZ

N (xN , ζ)), ζk i.i.d., ζ1
d
= N (0, Id)

so that, starting from xN(0)∈ (Rd)N , one sets

∀ k ≥ 0, xN(k + 1) = xN(k)− c

k + 1
∇DZ

N (xN(k), ζk+1)

where c∈ (0, 1] is a real constant to be tuned. As set, this looks quite formal
but the operating CLV Q procedure consists of two phases at each iteration:

(i) Competitive Phase: Search of the nearest neighbor xN(k)i∗(k+1) of ζk+1

among the components of xN(k)i, i = 1, . . . , N (using a “winning convention”
in case of conflict on the boundary of the Voronoi cells).

(ii) Cooperative Phase: One moves the winning component toward ζk+1

using a dilatation i.e. xN(k + 1)i∗(k+1) = Dilatationζk+1,1− c
k+1

(xN(k)i∗(k+1)).

This procedure is useful for small or medium values of N . For an extensive
study of this procedure, which turns out to be singular in the world of recursive
stochastic approximation algorithms, we refer to [40]. For general background
on stochastic approximation, we refer to [25, 3].

The randomized “Lloyd I procedure”. This is the randomization of the station-
arity based fixed point procedure since any optimal quantizer satisfies (4):

ẐxN(k+1) = E(Z | ẐxN(k)), xN(0) ⊂ R
d.

At every iteration the conditional expectation E(Z | ẐxN(k)) is computed using
a Monte Carlo simulation. For more details about practical aspects of Lloyd I
procedure we refer to [43]. In [36], an approach based on genetic evolutionary
algorithms is developed.

For both procedures, one may substitute a sequence of quasi-random num-
bers to the usual pseudo-random sequence. This often speeds up the rate of
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convergence of the method, although this can only be proved (see [27]) for a
very specific class of stochastic algorithm (to which CLV Q does not belong).

The most important step to preserve the accuracy of the quantization as
N (and d(N)) increase is to use the so-called splitting method which finds
its origin in the proof of the existence of an optimal N -quantizer: once the
optimization of a quantization grid of size N is achieved, one specifies the
starting grid for the size N + 1 or more generally N + ν, ν ≥ 1, by merging
the optimized grid of size N resulting from the former procedure with ν points
sampled independently from the normal distribution with probability density

proportional to ϕ
d

d+2 where ϕ denotes the p.d.f. of N (0; Id). This rather un-
expected choice is motivated by the fact that this distribution provides the
lowest in average random quantization error (see [6]).

As a result, to be downloaded on the website [45] devoted to quantization:

www.quantize.maths-fi.com

◦ Optimized stationary codebooks for W : in practice, the N -quantizers βN

of the distribution ⊗d(N)
k=1 N (0; λk), N =1 up to 10 000 (d(N) runs from 1 up

to 9).

◦ Companion parameters:

– distribution of ŴΓ N

: P(ŴΓ N

= xN
i ) = P(ẐβN

d(N) = βN
i ) (← in Rd(N)).

– The quadratic quantization error: ‖W − ŴΓ N ‖
2
.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Optimized functional quantization of the Brownian motion W for N = 10, 15
(d(N) = 2). Top: βN depicted in R

2. Bottom: the optimized N-quantizer Γ N .
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7.4 An alternative: product functional quantization

Scalar Product functional quantization is a quantization method which pro-
duces rate optimal sub-optimal quantizers. They were used e.g. in [29] to
provide exact rate (although not sharp) for a very large class of processes.
The first attempts to use functional quantization for numerical computation
with the Brownian motion was achieved with these quantizers (see [44]). We
will see further on their assets. What follows is presented for the Brownian
motion but would work for a large class of centered Gaussian processes.

Let us consider again the expansion of W in its K-L basis :

W
L2

T=
∑

n≥1

√
λn ξn eW

n

where (ξn)n≥1 is an i.i.d. sequence N (0; 1)-distributed random variables (keep
in mind this convergence also holds a.s. uniformly in t∈ [0, T ]). The idea is
simply to quantize these (normalized) random coordinates ξn: for every n ≥ 1,

one considers an optimal Nn-quantization of ξn, denoted ξ̂
(Nn)
n (Nn ≥ 1). For

n > m, set Nn = 1 and ξ̂
(Nn)
n = 0 (which is the optimal 1-quantization). The

integer m is called the length of the product quantization. Then, one sets

Ŵ
(N1,...,Nm, prod)
t :=

∑

n≥1

√
λn ξ̂(Nn)

n eW
n (t) =

m∑

n=1

√
λn ξ̂(Nn)

n eW
n (t).

Such a quantizer takes
∏m

n=1 Nn ≤ N values.

If one denotes by αM = {αM
1 , . . . , αM

M} the (unique) optimal quadratic M -
quantizer of the N (0; 1)-distribution, the underlying quantizer of the above

quantization Ŵ (N1,...,Nm, prod) can be expressed as follows (if one introduces
the appropriate multi-indexation): for every multi-index i := (i1, . . . , im) ∈∏m

n=1{1, . . . , Nn}, set

x
(N)
i (t) :=

m∑

n=1

√
λn α

(Nn)
in

eW
n (t) and Γ N1,...,Nm,prod :=

{
x

(N)
i , i∈

m∏

n=1

{1, . . . , Nn}
}

.

Then the product quantization Ŵ (N1,...,Nm, prod) can be rewritten as

Ŵ
(N1,...,Nm, prod)
t =

∑

i

1{W∈Ci(Γ N1,...,Nm,prod)}x
(N)
i (t).

where the Voronoi cell of x
(N)
i is given by

Ci(Γ
N1,...,Nm,prod) =

m∏

n=1

(α
(Nn)

in− 1
2

, α
(Nn)

in+ 1
2

)

with α
(M)

i± 1
2

:=
α

(M)

i
+α

(M)

i±1

2 , α0 = −∞, αM+1 = +∞.
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Quantization rate by product quantizers

It is clear that the optimal product quantizer is the solution to the optimal
integral bit allocation

min
{
‖W−Ŵ (N1,...,Nm, prod)‖

2
, N1, . . . , Nm ≥ 1, N1×· · ·×Nm≤N, m≥1

}
.

(12)

Expanding ‖W − Ŵ (N1,...,Nm, prod)‖2
2

= ‖|W − Ŵ (N1,...,Nm, prod)|L2
T
‖2

2
yields

‖W − Ŵ (N1,...,Nm, prod)‖2
2

=
∑

n≥1

λn‖ξ̂(Nn)
n − ξn‖22 (13)

=

m∑

n=1

λn(e2
Nn

(N (0; 1), R)− 1) +
T 2

2
(14)

since
∑

n≥1

λn = E

∑

n≥1

(W | eW
n )2

2
= E

∫ T

0

W 2
t dt =

∫ T

0

t dt =
T 2

2
.

Theorem 5. (see [29]) For every N ≥ 1, there exists an optimal scalar prod-

uct quantizer of size at most N (or at level N), denoted Ŵ (N, prod), of the
Brownian motion defined as the solution to the minimization problem (12).
Furthermore these optimal product quantizers make up a rate optimal se-
quence: there exists a real constant cW > 0 such that

‖W − Ŵ (N, prod)‖2 ≤
cW T

(log N)
1
2

.

Proof (sketch of). By scaling one may assume without loss of generality
that T = 1. Combining (13) and Zador’s Theorem shows

‖W − Ŵ (N1,...,Nm, prod)‖2
2
≤ C

(
m∑

n=1

1

n2N2
n

)
+

∑

n≥m+1

λn

≤ C′
(

m∑

n=1

1

n2N2
n

+
1

m

)

with
∏

n Nn ≤ N . Setting m := m(N) = [log N ] and Nk =

[
(m!N)

1
m

k

]
≥ 1,

k = 1, . . . , m, yields the announced upper-bound. ♦

Remarks. • One can show that the length m(N) of the optimal quadratic
product quantizer satisfies

m(N) ∼ log N as N → +∞.

• The most striking fact is that very few ingredients are necessary to make the
proof work as far as the quantization rate is concerned. We only need the basis
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of L2
T

on which W is expanded to be orthonormal or the random coordinates
to be orthogonal in L2(P). This robustness of the proof has been used to obtain
some upper bounds for very wide classes of Gaussian processes by considering
alternative orthonormal basis of L2

T like the Haar basis for processes having
self-similarity properties (see [29]), or trigonometric basis for stationary pro-
cesses (see [29]). More recently, combined with the non asymptotic Zador’s
Theorem, it was used to provide some connections between mean regularity
of stochastic processes and quantization rate (see Section 10 and [33]).

• Block quantizers combined with large deviations estimates were used to
provide the sharp rate obtained in Theorem 3 in [30].

• d-dimensional block quantization is also possible, possibly with varying block
size, providing a constructive approach to sharp rate, see [56] and [35].

• A similar approach can also provide some Lr(P)-rates for product quanti-
zation with respect to the sup-norm over [0, T ], see [32].

How to use product quantizers for numerical computations ?

For numerics one can assume by a scaling argument that T = 1. To use
product quantizers for numerics we need to have access to the quantizers (or
grid) at a given level N , their weights (and the quantization error). All these
quantities are available with product quantizers. In fact the first attempts to
use functional quantization for numerics (path dependent option pricing) were
carried out with product quantizers (see [44]).

• The optimal product quantizers (denoted Γ (N,prod)) at level N are explicit,
given the optimal quantizers of the scalar normal distribution N (0; 1). In
fact the optimal allocation of the size Ni of each marginal has been already
achieved up to very high values of N . Some typical optimal allocation (and
the resulting quadratic quantization error) are reported in the table below.

N Nrec Quant. Error Opti. Alloc.

1 1 0.7071 1
10 10 0.3138 5-2
100 96 0.2264 12-4-2

1 000 966 0.1881 23-7-3-2
10 000 9 984 0.1626 26-8-4-3-2-2
100 000 97 920 0.1461 34 – 10 – 6 – 4 – 3 – 2 – 2

• The weights P(Ŵ (N, prod) = xi) are explicit too: the normalized coordinates
ξn of W in its K-L basis are independent, consequently

P(Ŵ (N, prod) = xi) = P(ξ̂(Nn)
n = α

(Nn)
in

, n = 1, . . . , m(N))

=

m(N)∏

n=1

P(ξ̂(Nn)
n = α

(Nn)
in

)
︸ ︷︷ ︸

1D (tabulated) weights

.
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• Equation (14) shows that the (squared) quantization error of a product
quantizer can be straightforwardly computed as soon as one knows the eigen-
values and the (squared) quantization error of the normal distributions for
the Ni’s.

The optimal allocations up to N = 12 000 can be downloaded on the web-
site [45] as well as the necessary 1-dimensional optimal quantizers (including
the weights and the quantization error) of the scalar normal distribution (up
to a size of 500 which quite enough for this purpose).

For numerical purpose we are also interested in the stationarity property
since such quantizers produce lower (weak) errors in cubature formulas.

Proposition 2. (see [44]) The product quantizers obtained from the K-L ba-
sis are stationary quantizers (although sub-optimal).

Proof. Firstly, note that

ŴN,prod =
∑

n≥1

√
λn ξ̂(Nn)

n en(t)

so that σ(ŴN,prod) = σ(ξ̂
(Nk)
k , k ≥ 1). Consequently

E(W | ŴN,prod) = E(W |σ(ξ̂
(Nk)
k , k ≥ 1))

E(W | ŴN,prod) =
∑

n≥1

√
λn E

(
ξn |σ(ξ̂

(Nk)
k , k ≥ 1)

)
eW

n

i.i.d.
=
∑

n≥1

√
λn E

(
ξn | ξ̂(Nn)

n

)
eW

n

=
∑

n≥1

√
λn ξ̂(Nn)

n eW
n = Ŵ . ♦

Remarks. • This result is no longer true for product quantizers based on
other orthonormal basis.
• This shows the existence of non optimal stationary quantizers.

7.5 Optimal vs product quadratic functional quantization (T = 1)

◦ (Numerical) Optimized Quantization: By scaling, we can assume with-
out loss of generality that T = 1. We carried out a huge optimization task in
order to produce some optimized quantization grids for the Brownian motion
by solving numerically (ON ) for N = 1 up to N = 10 000.

e
N

(W, L2
T
)2 ≈ 0.2195

log N
, N = 1, . . . , 10 000.

This value (see Figure 9(left)) is significantly greater than the theoretical
(asymptotic) bound given by Theorem 3 which is
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Fig. 7. Product quantization of the Brownian motion: the Nrec-quantizer Γ (N, prod).
N = 10: Nrec = 10 and N = 50: Nrec = 12 × 4 = 48.
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Fig. 8. Product quantization of the Brownian motion: the Nrec-quantizer Γ (N, prod).
N = 100: Nrec = 12 × 4 × 2 = 96.

lim
N

log Ne
N

(W, L2
T
)2 =

2

π2
= 0.2026...

Our guess, supported by our numerical experiments, is that in fact N 7→
log Ne

N
(W, L2

T
)2 is possibly not monotonous but unimodal.

◦ Optimal Product quantization: as displayed on Figure 9(right),
one has approximately

min
{
‖ |W − Ŵ |L2

T
‖2

2
, 1 ≤ N1 · · ·Nm ≤ N, m ≥ 1

}
= ‖W−Ŵ (N,prod)‖2

2
≈ 0.245

log N

◦ Optimal d-dimensional block product quantization: let us
briefly mention this approach developed in [56] in which product quantiza-
tion is achieved by quantizing some marginal blocks of size 1, 2 or 3. By this
approach, the corresponding constant is approximately 0.23, i.e. roughly in
between scalar product quantization and optimized numeric quantization.

The conclusion, confirmed by our numerical experiments on option pricing
(see Section 9), is that
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– Optimal quantization is significantly more accurate on numerical exper-
iments but is much more demanding since it needs to keep off line or at least
to handle large files (say 1 GB for N = 10 000).

– Both approaches are included in the option pricer Premia (MATHFI
Project, Inria). An online benchmark is available on the website [45].
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Fig. 9. Numerical quantization rates. Top (Optimal quantization). Line + + +:

log N 7→ (‖W − Ŵ N‖2)−2. Dashed line: log N 7→ log N/0.2194. Solid line: log N 7→
log N/0.25. Bottom (Product quantization). Line + + +: log N 7→ ( min

1≤k≤N
‖W −

Ŵ k,prod‖2
2
)−1. Solid line: log N 7→ log N/0.25.

8 Constructive functional quantization of diffusions

8.1 Rate optimality for Scalar Brownian diffusions

One considers on a probability space (Ω,A, P) an homogenous Brownian dif-
fusion process:

dXt = b(Xt)dt + ϑ(Xt) dWt, X0 = x0∈ R,

where b and ϑ are continuous on R with at most linear growth (i.e. |b(x)| +
|σ(x)| ≤ C(1 + |x|)) so that at least a weak solution to the equation exists.

To devise a constructive way to quantize the diffusion X , it seems natural
to start from a rate optimal quantization of the Brownian motion and to
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obtain some “good” (but how good?) quantizers for the diffusion by solving
an appropriate ODE. So let Γ N = (wN

1 , · · · , wN
N ), N ≥ 1, be a sequence

of stationary rate optimal N -quantizers of W . One considers the following
(non-coupled) Integral Equations:

dx
(N)
i (t) =

(
b(x

(N)
i (t)) − 1

2
ϑθ′(x(N)

i (t))

)
dt + ϑ(t, x

(N)
i (t)) dwN

i (t). (15)

Set

X̃x(N)

t =

N∑

k=1

x
(N)
i (t)1{Ŵ Γ N =wN

i
}.

The process X̃x(N)

is a non-Voronoi quantizer (since it is defined using the
Voronoi diagram of W ). What is interesting is that it is a computable quan-
tizer (once the above integral equations have been solved) since the weights

P(ŴΓ N

= wN
i ) are known. The Voronoi quantization defined by x(N) induces

a lower quantization error but we have no access to its weights for numerics.

The good news is that X̃x(N)

is already rate optimal.

Theorem 6. ([31] (2006)) Assume that b is differentiable, ϑ is positive twice

differentiable and that b′ − bϑ′

ϑ − 1
2ϑϑ” is bounded. Then

e
N

(X, L2
T
) ≤ ‖ X − X̃x(N)‖2 = O((log N)−

1
2 ).

If furthermore, ϑ ≥ ε0 > 0, then e
N

(X, L2
T
) ≈ (log N)−

1
2 .

Remarks. • For some results in the non homogenous case, we refer to [31].
Furthermore, the above estimates still hold true for the (Lr(P), Lp

T
)-quantization,

1 < r, p < +∞ provided ‖|W − ŴΓ N |Lp

T
‖r = O((log N)−

1
2 ).

• This result is closely connected to the Doss-Sussman approach (see e.g. [13])
and in fact the results can be extended to some classes multi-dimensional dif-
fusions (whose diffusion coefficient is the inverse of the gradient of a diffeo-
morphism) which include several standard multi-dimensional financial models
(including the Black-Scholes model).

• A sharp quantization rate e
N,r

(X, Lp
T
) ∼ c(log N)−

1
2 for scalar elliptic diffu-

sions is established in [10, 11] using a non constructive approach, 1 ≤ p ≤ ∞.

Example: Rate optimal product quantization of the Ornstein-Uhlenbeck pro-
cess.

dXt = −kXtdt + ϑdWt, X0 = x0.

One solves the non-coupled integral (linear) system

xi(t) = x0 − k

∫ t

0

xi(s) ds + ϑwN
i (t),

where Γ N := {wN
1 , . . . , wN

N }, N ≥ 1 is a rate optimal sequence of quantizers
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wN
i (t) =

√
2

T

∑

ℓ≥1

̟i,ℓ
T

π(ℓ − 1/2)
sin

(
π(ℓ− 1/2)

t

T

)
, i∈ IN .

If Γ N is optimal for W then ̟i,ℓ := (βN
i )ℓ, i = 1, . . . , N , 1 ≤ ℓ ≤ d(N) with

the notations introduced in (11). If Γ N is an optimal product quantizer (and

N1, . . . , Nℓ, . . . denote the optimal size allocation), then ̟i,ℓ = α
(Nℓ)
iℓ

, where
i := (i1, . . . , iℓ, . . .)∈

∏
ℓ≥1{1, . . . , Nℓ}. Elementary computations show that

xN
i (t) = e−ktx0 + ϑ

∑

ℓ≥1

χ
(Nℓ)
iℓ

c̃ℓ ϕℓ(t)

with c̃ℓ =
T 2

(π(ℓ − 1/2))2 + (kT )2

and ϕℓ(t) :=

√
2

T

(
π

T
(ℓ−1/2) sin

(
π(ℓ−1/2)

t

T

)
+k

(
cos

(
π(ℓ−1/2)

t

T

)
−e−kt

))
.

8.2 Multi-dimensional diffusions for Stratanovich SDE’s

The correcting term − 1
2ϑϑ′ coming up in the integral equations suggest to

consider directly some diffusion in the Stratanovich sense

dXt = b(t, Xt) dt + ϑ(t, Xt) ◦ dWt X0 = x0∈ R
d, t∈ [0, T ].

(see e.g. [51] for an introduction) where W = (W 1, . . . , W d) is a d-dimensional
standard Brownian Motion.

In that framework, we need to introduce the notion of p-variation: a con-
tinuous function x : [0, T ]→ R

d has finite p-variations if

V arp,[0,T ](x) := sup





(
k−1∑

i=0

|x(ti)− x(ti+1)|p
) 1

p

, 0 ≤ t0 ≤ t1 ≤ . . . ≤ tk ≤ T, k ≥ 1



 < +∞.

Then dp(x, x′) = |x(0) − x′(0)| + V arp,[0,T ](x − x′) defines a distance on
the set of functions with finite p-variations. It is classical background that
V arp,[0,T ](W (ω)) < +∞ P(dω)-a.s. for every p > 2.

One way to quantize W at level (at most) N is to quantize each component

W i at level ⌊ d
√

N⌋. One shows (see [30]) that ‖W−(Ŵ 1,⌊ d
√

N⌋, . . . , Ŵ d,⌊ d
√

N⌋)‖
2

=

O((log N)−
1
2 ).

Let Cr
b ([0, T ]×R

d) r > 0, denote the set of ⌊r⌋-times differentiable bounded
functions f : [0, T ]× Rd → Rd with bounded partial derivatives up to order
⌊r⌋ and whose partial derivatives of order ⌊r⌋ are (r − ⌊r⌋)-Hölder.

Theorem 7. (see [46]) Let b, ϑ ∈ C2+α
b ([0, T ] × Rd) (α > 0) and let Γ N =

{wN
1 , . . . , wN

N
}, N ≥ 1, be a sequence of N -quantizers of the standard d-

dimensional Brownian motion W such that ‖W − ŴΓ N ‖
2
→ 0 as N → ∞.

Let
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X̃x(N)

t :=

N∑

i=1

x
(N)
i (t)1{Ŵ=wN

i
}

where, for every i∈ {1, . . . , N}, x
(N)
i is solution to

ODEi ≡ dx
(N)
i (t) = b(t, x

(N)
i (t))dt + ϑ(t, x

(N)
i (t))dwN

i (t), x
(N)
i (0) = x.

Then, for every p∈ (2,∞),

V arp,[0,T ](X̃
x(N) −X)

P−→ 0 as N →∞.

Remarks. • The keys of this results are the Kolmogorov criterion, stationarity
(in a slightly extended sense) and the connection with rough paths theory
(see [28] for an introduction to rough paths theory, convergence in p-variation,
etc).
• In that general setting we have no convergence rate although we conjecture

that X̃x(N)

remains rate optimal if ŴΓ N

is.
• There are also some results about the convergence of stochastic integrals of

the form

∫ t

0

g(ŴN
s ) dB̂N

s →
∫ t

0

g(Ws) ◦ dBs, with some rates of convergence

when W = B or W and B independent (depending on the regularity of the
function g, see [46]).

9 Applications to path-dependent option pricing

The typical functionals F defined on (L2
T
, | . |L2

T
) for which E (F (W )) can

be approximated by the cubature formulae (5), (7) are of the form F (ω) :=

ϕ

(∫ T

0

f(t, ω(t))dt

)
1{ω∈C([0,T ],R)} where f : [0, T ]× R → R is locally Lips-

chitz continuous in the second variable, namely

∀ t∈ [0, T ], ∀u, v∈ R, |f(t, u)− f(t, v)| ≤ Cf |u− v|(1 + g(|u|) + g(|v|))

(with g : R+ → R+ is increasing, convex and g(supt∈[0,T ] |Wt|)∈ L2(P)) and
ϕ : R → R is Lipschitz continuous. One could consider for ω some càdlàg
functions as well. A classical example is the Asian payoff in a Black-Scholes
model

F (ω) = exp(−rT )

(
1

T

∫ T

0

s0 exp(σω(t) + (r − σ2/2)t)dt−K

)

+

.
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9.1 Numerical integration (II): log-Romberg extrapolation

Let F : L2
T
−→ R be a 3 times | . |L2

T
-differentiable functional with bounded

differentials. Assume Ŵ (N), N ≥ 1, is a sequence of a rate-optimal stationary
quantizations of the standard Brownian motion W . Assume furthermore that

E

(
D2F (Ŵ (N)).(W − Ŵ (N))⊗2

)
∼ c

log N
as N →∞ (16)

and
E |W − Ŵ (N)|3L2

T

= O
(
(log N)−

3
2

)
. (17)

Then, a higher order Taylor expansion yields

F (W ) = F (Ŵ (N)) + DF (Ŵ (N)).(W − Ŵ (N)) +
1

2
D2F (Ŵ (N)).(W − Ŵ (N))⊗2

+
1

6
D2(ζ).(W − Ŵ (N))⊗3, ζ∈ (Ŵ (N), W ),

E F (W ) = EF (Ŵ (N)) +
c

2 log N
+ o

(
(log N)−

3
2+ε
)

.

Then, one can design a log-Romberg extrapolation by considering N, N ′,
N < N ′ (e.g. N ′ ≈ 4 N), so that

E(F (W )) =
log N ′×E(F (Ŵ (N ′)))− log N ′×E(F (Ŵ (N)))

log N ′ − log N
+ o

(
(log N)−

3
2+ε
)

.

For practical implementation, it is suggested in [56] to replace log N by the

more consistent “estimator” ‖W − Ŵ (N)‖−2
2

.

In fact Assumption (16) holds true for optimal product quantization when
F is polynomial function F , d0F = 2. Assumption (17) holds true in that
case as well (see [21]). As concerns optimal quantization, these statements

are still conjectures. However, given that Ŵ and W − Ŵ are independent
(see [29]), (16) is equivalent to the simple case where D2F (Ŵ (N)) is constant.

Note that the above extrapolation or some variants can be implemented
with other stochastic processes in accordance with the rate of convergence of
the quantization error.

9.2 Asian option pricing in a Heston stochastic volatility model

In this section, we will price an Asian call option in a Heston stochastic volatil-
ity model using some optimal (at least optimized) functional quantization of
the two Brownian motions that drive the diffusion. This model has already
been considered in [44] in which functional quantization was implemented for
the first time with some product quantizations of the Brownian motions. The
Heston stochastic volatility model was introduced in [22] to model stock price
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dynamics. Its popularity partly comes from the existence of semi-closed forms
for vanilla European options, based on inverse Fourier transform and from its
ability to reproduce some skewness shape of the implied volatility surface. We
consider it under its risk-neutral probability measure.

dSt = St(r dt +
√

vtdW 1
t ), S0 = s0 > 0, (risky asset)

dvt = k(a− vt)dt + ϑ
√

vt dW 2
t , v0 > 0 with d<W 1, W 2>t= ρ dt, ρ∈ [−1, 1].

where ϑ, k, a such that ϑ2/(4ak) < 1. We consider the Asian Call payoff with
maturity T and strike K. No closed form is available for its premium

AsCallHest = e−rT
E

(
1

T

∫ T

0

Ssds−K

)+

.

We briefly recall how to proceed (see [44] for details): first, one projects W 1

on W 2 so that W 1 = ρW 2 +
√

1− ρ2 W̃ 1 and

St = s0 exp

(
(r − 1

2
v̄t)t + ρ

∫ t

0

√
vsdW 2

s

)
exp

(√
1− ρ2

∫ t

0

√
vsdW̃ 1

s

)

= s0 exp

(
t

(
(r − ρak

ϑ
) + v̄t(

ρk

ϑ
− 1

2
)

)
+

ρ

ϑ
(vt − v0)

)
exp

(√
1− ρ2

∫ t

0

√
vsdW̃ 1

s

)
.

The chaining rule for conditional expectations yields

AsCallHest(s0, K) = e−rT
E


E



(

1

T

∫ T

0

Ssds−K

)+

|σ(W 2
t , 0 ≤ t ≤ T )




 .

Combining these two expressions and using that W̃ 1 and W 2 are indepen-
dent show that AsCallHest(s0, K) is a functional of (W̃ 1

t , vt) (as concerns the

squared volatility process v, only v
T

and
∫ T

0 vsds are involved).

Let Γ N = {wN
1 , . . . , wN

N
} be an N -quantizer of the Brownian motion. One

solves for i = 1, . . . , N , the differential equations for (vt)

dyi(t) = k

(
a− yi(t)−

ϑ2

4k

)
dt + ϑ

√
yi(t) dwN

i (t), yi(0) = v0, (18)

using e.g. a Runge-Kuta scheme. Let yn,N
i denote the approximation of yi

resulting from the resolution of the above ODEi (1/n is the time discretization
parameter of the scheme). Set the (non-Voronoi) N -quantization of (vt, St) by

ṽn,N
t =

∑

i

yn,N
i (t)1Ci(Γ N )(W

2) (19)

S̃n,N
t =

∑

1≤i,j≤N

sn,N
i,j (t)1Ci(Γ N )(W̃

1)1Cj(Γ N )(W
2) (20)
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with sn,N
i,j (t) = s0 exp

(
t

(
(r − ρak

ϑ
) + yn,N

j (t)(
ρk

ϑ
− 1

2
)

)
+

ρ

ϑ
(yn,N

j (t)− v0)

)

× exp

(√
1− ρ2

∫ t

0

√
yn,N

j (s) dwN
i (s)

)

and yn,N
j (t) =

∫ t

0

yn,N
j (s) ds.

Note this formula requires the computation of a quantized stochastic integral∫ t

0

√
yn,N

j (s)dwN
i (s) (which corresponds to the independent case).

The weights of the product cells {W̃ 1∈ Ci(Γ
N ), W 2∈ Cj(Γ

N )} is given by

P(W̃ 1∈ Ci(w
N ), W 2∈ Cj(w

N )) = P(W̃ 1∈ Ci(Γ
N ))P(W 2∈ Cj(Γ

N ))

owing to the independence. For practical implementations different sizes of
quantizers can be considered to quantize W̃ 1 and W 2.

We follow the guidelines of the methodology introduced in [44]: we compute
the crude quantized premium for two sizes N and N ′, then proceed a space
Romberg log-extrapolation. Finally, we make a K-linear interpolation based

on the (Asian) forward moneyness s0e
rT 1−e−rT

rT ≈ s0e
rT (like in [44]) and the

Asian Call-Put parity formula

AsianCallHest(s0, K) = AsianPutHest(s0, K) + s0
1− e−rT

rT
−Ke−rT .

The anchor strikes Kmin and Kmax of the extrapolation are chosen symmetric
with respect to the forward moneyness. At Kmax, the Call is deep out-of-the-
money: one uses the Romberg extrapolated FQ computation; at Kmin the
Call is deep in-the-money: on computes the Call by parity. In between, one
proceeds a linear interpolation in K (which yields the best results, compared
to other extrapolations like the quadratic regression approach).

◦ Parameters of the Heston model: s0 = 100, k = 2, a = 0.01, ρ = 0.5,
v0 = 10%, ϑ = 20%.

◦ Parameters of the option portfolio: T = 1, K = 99, · · · , 111 (13 strikes).

◦ The reference price has been computed by a 108 trial Monte Carlo sim-
ulation (including a time Romberg extrapolation of the Euler scheme with
2n = 256).

◦ The differential equations (18) are solved with the parameters of the
quantization cubature formulae ∆t = 1/32, with couples of quantization levels
(N, M) = (400, 100), (1000, 100), (3200, 400).

Functional Quantization can compute a whole vector (more than 10) op-
tion premia for the Asian option in the Heston model with 1 cent accuracy
in less than 1 second (implementation in C on a 2.5 GHz processor).
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Fig. 10. N-quantizer of the Heston squared volatility process (vt) (N = 400) result-
ing from an (optimized) N-quantizer of W .
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Fig. 11. Quantized diffusions based on optimal functional quantization: Pricing
by K-Interpolated-log-Romberg extrapolated-FQ prices as a function of K: absolute
error with (N, M) = (400, 100), (N, M) = (1000, 100), (N, M) = (3200, 400). T = 1,
s0 =50, K∈ {99, . . . , 111}. k=2, a=0.01, ρ=0.5, ϑ=0.1.

Further numerical tests carried out or in progress with the B-S model and
with the SABR model (Asian, vanilla European options) show the same effi-
ciency. Furthermore, recent attempt to quantize the volatility process and the
asset dynamics at different level of quantizations seem very promising in two
directions: reduction of the computation time and increase of the robustness
of the method to parameter change.

9.3 Comparison: optimized quantization vs (optimal) product
quantization

The comparison is balanced and probably needs some further in situ exper-
iments since it may depend on the modes of the computation. However, it
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Fig. 12. Quantized diffusions based on optimal functional quantization: Pricing
by K-Interpolated-log-Romberg extrapolated-FQ price as a function of K: conver-
gence as ∆t → 0 with (N, M) = (3200, 400) (absolute error). T = 1, s0 = 50,
K∈ {99, . . . , 111}. k=2, a=0.01, ρ=0.5, ϑ=0.1.
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Fig. 13. Quantized diffusions based on optimal product quantization: Pricing by
K-linear interpolation of Romberg log-extrapolations as un function of K (absolute
error) with (M, N)= (96, 966), (966, 9984). T = 1, s0 = 50, k = 2, a = 0.01, ρ = 0.5,
ϑ=0.1. K∈ {44, . . . , 56}.

seems that product quantizers (as those implemented in [44]) are from 2 up
to 4 times less efficient than optimal quantizers within our range of application
(small values of N). On the other hand, the design of product quantizer from
1-dim scalar quantizers is easy and can be made from some light elementary
“bricks” (the scalar quantizer up to N = 35 and the optimal allocation rules).
Thus, the whole set of data needed to design all optimal product quantizers
up to N = 10 000 is approximately 500 KB whereas one optimal quantizer
with size 10 000 ≈ 1 MB. . .
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10 Universal quantization rate and mean regularity

The following theorem points out the connection between functional quanti-
zation rate and mean regularity of t 7→ Xt from [0, T ] to Lr(P).

Theorem 8. ([33] (2005)) Let X = (Xt)t∈[0,T ] be a stochastic process. If
there is r∗∈ (0,∞) and a∈ (0, 1] such that

X0 ∈ Lr∗

(P), ‖Xt −Xs‖Lr∗ (P) ≤ CX |t− s|a,

for some positive real constant CX > 0, then

∀ p, r∈ (0, r∗), eN,r(X, Lp
T
) = O((log N)−a).

The proof is based on a constructive approach which involves the Haar basis
(instead of K-L basis), the non asymptotic version Zador Theorem and prod-
uct functional quantization. Roughly speaking, we use the unconditionality
of the Haar basis in every Lp

T
(when 1 <p < ∞) and its wavelet feature i.e.

its ability to “code” the path regularity of a function on the decay rate of its
coordinates.

Examples (see [33]): • d-dimensional Itô processes (includes d-dim diffu-
sions with sublinear coefficients) with a = 1/2.
• General Lévy process X with Lévy measure ν with square integrable big
jumps. If X has a Brownian component, then a = 2, otherwise if β(X) > 0
where β(X) := inf

{
θ :

∫
|y|θν(dy)<+∞

}
∈ (0, 2) (Blumenthal-Getoor index

of X), then a = β∗(X). This rate is the exact rate i.e.

eN,r(X, Lp
T
) ≈ (log N)−a

for many classes of Lévy processes like symmetric stable processes, Lévy pro-
cesses having a Brownian component, etc (see [33] for further examples).
• When X is a compound Poisson processes, then β(X) = 0 and one shows,
still with constructive methods, that

eN(X) = O(e−(log N)ϑ

), ϑ∈ (0, 1),

which is in-between the finite and infinite dimensional settings.

11 About lower bounds

In this overview, we gave no clue toward lower bounds although most of the
rates we mentioned are either exact (≈) or sharp (∼) (we tried to emphasize
the numerical aspects). Several approaches can be developed to get some lower
bounds. Historically, the first one was to rely on subadditivity property of the
quantization error derived from self-similarity of the distribution: this works
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with the uniform distribution over [0, 1]d but also in an infinite dimensional
framework (see e.g. [12] for the fractional Brownian motion).

A second approach consists in pointing out the connection with the
Shannon-Kolmogorov entropy (see e.g. [29]) using that the entropy of a ran-
dom variable taking at most N values is at most log N .

A third connection can be made with small deviation theory (see [9], [19]
and [33]). Thus, in [19], a connection is established between (functional) quan-
tization and small ball deviation for Gaussian processes. In particular this
approach provides a method to derive a lower bound for the quantization rate
from some upper bound for the small deviation problem. A careful reading of
the proof of Theorem 1.2 in [19] shows that this small deviation lower bound
holds for any unimodal (w.r.t. 0) non zero process. To be precise: assume that
P

X
is Lp

T
-unimodal i.e. there exists a real ε0 > 0 such that

∀x∈ Lp
T
, ∀ ε∈ (0, ε0], P(|X − x|Lp

T
≤ ε) ≤ P(|X |Lp

T
≤ ε).

For centered Gaussian processes (or processes “subordinated” to Gaussian
processes) this follows from the Anderson Inequality (when p ≥ 1). If

G(− log(P(|X |Lp

T
≤ ε))) = Ω(1/ε) as ε→ 0

for some increasing unbounded function G : (0,∞)→ (0,∞), then

∀ c > 1, lim inf
N

G(log(cN))e
N,r

(X, Lp
T
) > 0, r∈ (0,∞). (21)

This approach is efficient in the non quadratic case as emphasized in [33]
where several universal bounds are shown to be optimal using this approach.

Acknowledgement. I thank S. Graf, H. Luschgy J. Printems and B.
Wilbertz for all the fruitful discussions and collaborations we have about
functional quantization.
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