2,020 research outputs found

    Orbital Complications of Functional Endoscopic Sinus Surgery

    Get PDF
    Objective: Functional endoscopic sinus surgery (FESS) is an operating procedure for surgical treatment of diseases of the paranasal sinuses. There are precised indications for this surgical intervention. Like any invasive intervention there is a risk of occurrence of complications. Some of the most common are the orbital complications.Methods: By analyzing the available literature, the authors compare and summarize the results of various studies on this subject.Results: Orbital complications are rare but can be with severe consequences, including the complete loss of vision, and even death. Most of them after adequate treatment have not substantial implications but the underestimation can have serious consequences.Conclusion: The first step to avoid complications is prevention. If we have doubts of complications they must be precised instantly and act responsibly towards them. In the presence of this complication, one should be immediately consulted with an ophthalmologist and periodic assessment of IOP and visual acuity

    Extremal Kerr Black Hole Dark Matter from Hawking Evaporation

    Full text link
    The Hawking process results in a monotonic decrease of the black hole mass, but a biased random walk of the black hole angular momentum. We demonstrate that this stochastic process leads to a significant fraction of primordial black holes becoming extremal Kerr black holes (EKBHs) of one to a few Planck masses regardless of their initial mass. For these EKBHs, the probability of ever absorbing a photon or other particle from the cosmic environment is small, even in the cores of galaxies. Assuming that EKBHs are stable, they behave as cold dark matter, and can comprise all of the dark matter if they are formed with the correct initial abundance.Comment: 11 Pages, 7 figure

    Cosmic topology. Part II. Eigenmodes, correlation matrices, and detectability of orientable Euclidean manifolds

    Get PDF
    If the Universe has non-trivial spatial topology, observables depend on both the parameters of the spatial manifold and the position and orientation of the observer. In infinite Euclidean space, most cosmological observables arise from the amplitudes of Fourier modes of primordial scalar curvature perturbations. Topological boundary conditions replace the full set of Fourier modes with specific linear combinations of selected Fourier modes as the eigenmodes of the scalar Laplacian. We present formulas for eigenmodes in orientable Euclidean manifolds with the topologies E1E_1 - E6E_6, E11E_{11}, E12E_{12}, E16E_{16}, and E18E_{18} that encompass the full range of manifold parameters and observer positions, generalizing previous treatments. Under the assumption that the amplitudes of primordial scalar curvature eigenmodes are independent random variables, for each topology we obtain the correlation matrices of Fourier-mode amplitudes (of scalar fields linearly related to the scalar curvature) and the correlation matrices of spherical-harmonic coefficients of such fields sampled on a sphere, such as the temperature of the cosmic microwave background (CMB). We evaluate the detectability of these correlations given the cosmic variance of the observed CMB sky. We find that topologies where the distance to our nearest clone is less than about 1.2 times the diameter of the last scattering surface of the CMB give a correlation signal that is larger than cosmic variance noise in the CMB. This implies that if cosmic topology is the explanation of large-angle anomalies in the CMB, then the distance to our nearest clone is not much larger than the diameter of the last scattering surface. We argue that the topological information is likely to be better preserved in three-dimensional data, such as will eventually be available from large-scale structure surveys.Comment: 79 pages, 9 figure

    Cyber Intelligence in the Era of Big Data

    Get PDF
    Three key moments have to be solved for this complex problem proper ap- proaching: (i) selection of suitable formalism for fast and easy modelling, im- plementing both experts’ data and cyber incidents statistics on past and future cyberattacks trends; (ii) model quantification is necessary to be added, achieving a suitable machine interpretation for discrete optimization; (iii) some probabilistic elements have also to be considered, in order to achieve realistic models, practi- cal implementation decision support, benefitting from the “big data” knowledge context of the task. Practical implementation of these moments will be given further

    Carfilzomib-lenalidomide-dexamethasone vs lenalidomide-dexamethasone in relapsed multiple myeloma by previous treatment

    Get PDF
    Carfilzomib, a proteasome inhibitor, is approved as monotherapy and in combination with dexamethasone or lenalidomide-dexamethasone (Rd) for relapsed or refractory multiple myeloma. The approval of carfilzomib-lenalidomide-dexamethasone (KRd) was based on results from the randomized, phase 3 study ASPIRE (NCT01080391), which showed KRd significantly improved progression-free survival (PFS) vs Rd (median 26.3 vs 17.6 months; hazard ratio (HR)=0.690; P=0.0001). This subgroup analysis of ASPIRE evaluated KRd vs Rd by number of previous lines of therapy and previous exposure to bortezomib, thalidomide or lenalidomide. Treatment with KRd led to a 12-month improvement in median PFS vs Rd after first relapse (HR 0.713) and a 9-month improvement after 2 previous lines of therapy (HR 0.720). Treatment with KRd led to an approximate 8-month improvement vs Rd in median PFS in bortezomib-exposed patients (HR 0.699), a 15-month improvement in thalidomide-exposed patients (HR 0.587) and a 5-month improvement in lenalidomide-exposed patients (HR 0.796). Objective response and complete response or better rates were higher with KRd vs Rd, irrespective of previous treatment. KRd had a favorable benefit-risk profile and should be considered an appropriate treatment option for patients with 1 or 2 previous lines of therapy and those previously exposed to bortezomib, thalidomide or lenalidomide

    Game theory framework for MAC parameter optimization in energy-delay constrained sensor networks

    Get PDF
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy-constrained, delay-sensitive wireless sensor networks is a conflicting multiobjective optimization problem. We investigate the problem from a game theory perspective, where the two optimization objectives are considered as game players. The cost model of each player is mapped through a generalized optimization framework onto protocol-specific MAC parameters. From the optimization framework, a game is first defined by the Nash bargaining solution (NBS) to assure energy consumption and e2e delay balancing. Secondy, the Kalai-Smorodinsky bargaining solution (KSBS) is used to find an equal proportion of gain between players. Both methods offer a bargaining solution to the duty-cycle MAC protocol under different axioms. As a result, given the two performance requirements (i.e., the maximum latency tolerated by the application and the initial energy budget of nodes), the proposed framework allows to set tunable system parameters to reach a fair equilibrium point that dually minimizes the system latency and energy consumption. For illustration, this formulation is applied to six state-of-the-art wireless sensor network (WSN) MAC protocols: B-MAC, X-MAC, RI-MAC, SMAC, DMAC, and LMAC. The article shows the effectiveness and scalability of such a framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements

    One-step nanoscale expansion microscopy reveals individual protein shapes

    Get PDF
    \ua9 The Author(s) 2024.The attainable resolution of fluorescence microscopy has reached the subnanometer range, but this technique still fails to image the morphology of single proteins or small molecular complexes. Here, we expand the specimens at least tenfold, label them with conventional fluorophores and image them with conventional light microscopes, acquiring videos in which we analyze fluorescence fluctuations. One-step nanoscale expansion (ONE) microscopy enables the visualization of the shapes of individual membrane and soluble proteins, achieving around 1-nm resolution. We show that conformational changes are readily observable, such as those undergone by the ~17-kDa protein calmodulin upon Ca2+ binding. ONE is also applied to clinical samples, analyzing the morphology of protein aggregates in cerebrospinal fluid from persons with Parkinson disease, potentially aiding disease diagnosis. This technology bridges the gap between high-resolution structural biology techniques and light microscopy, providing new avenues for discoveries in biology and medicine

    One-step nanoscale expansion microscopy reveals individual protein shapes

    Get PDF
    The attainable resolution of fluorescence microscopy has reached the subnanometer range, but this technique still fails to image the morphology of single proteins or small molecular complexes. Here, we expand the specimens at least tenfold, label them with conventional fluorophores and image them with conventional light microscopes, acquiring videos in which we analyze fluorescence fluctuations. One-step nanoscale expansion (ONE) microscopy enables the visualization of the shapes of individual membrane and soluble proteins, achieving around 1-nm resolution. We show that conformational changes are readily observable, such as those undergone by the ~17-kDa protein calmodulin upon Ca2+ binding. ONE is also applied to clinical samples, analyzing the morphology of protein aggregates in cerebrospinal fluid from persons with Parkinson disease, potentially aiding disease diagnosis. This technology bridges the gap between high-resolution structural biology techniques and light microscopy, providing new avenues for discoveries in biology and medicine

    Geminin Is Required for Zygotic Gene Expression at the Xenopus Mid-Blastula Transition

    Get PDF
    In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT). As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways
    corecore