422 research outputs found

    Tightened constraints on the time-lag between Antarctic temperature and CO<sub>2</sub> during the last deglaciation

    No full text
    Antarctic ice cores provide clear evidence of a close coupling between variations in Antarctic temperature and the atmospheric concentration of CO2 during the glacial/interglacial cycles of at least the past 800-thousand years. Precise information on the relative timing of the temperature and CO2 changes can assist in refining our understanding of the physical processes involved in this coupling. Here, we focus on the last deglaciation, 19 000 to 11 000 yr before present, during which CO2 concentrations increased by ~80 parts per million by volume and Antarctic temperature increased by ~10 °C. Utilising a recently developed proxy for regional Antarctic temperature, derived from five near-coastal ice cores and two ice core CO2 records with high dating precision, we show that the increase in CO2 likely lagged the increase in regional Antarctic temperature by less than 400 yr and that even a short lead of CO2 over temperature cannot be excluded. This result, consistent for both CO2 records, implies a faster coupling between temperature and CO2 than previous estimates, which had permitted up to millennial-scale lags

    Overcoming the risk of inaction from emissions uncertainty in smallholder agriculture

    Get PDF
    The potential for improving productivity and increasing the resilience of smallholder agriculture, while also contributing to climate change mitigation, has recently received considerable political attention (Beddington et al 2012). Financial support for improving smallholder agriculture could come from performance-based funding including sale of carbon credits or certified commodities, payments for ecosystem services, and nationally appropriate mitigation action (NAMA) budgets, as well as more traditional sources of development and environment finance. Monitoring the greenhouse gas fluxes associated with changes to agricultural practice is needed for performance-based mitigation funding, and efforts are underway to develop tools to quantify mitigation achieved and assess trade-offs and synergies between mitigation and other livelihood and environmental priorities (Olander 2012)

    Retrieving a common accumulation record from Greenland ice cores for the past 1800 years

    Get PDF
    Abstract. In the accumulation zone of the Greenland ice sheet the annual accumulation rate may be determined through identification of the annual cy-cle in the isotopic climate signal and other parameters that exhibit seasonal vari-ations. On an annual basis the accumulation rate in different Greenland ice cores is highly variable, and the degree of correlation between accumulation series from different ice cores is low. However, when using multi year averages of the dif-ferent accumulation records the correlation increases significantly. A statistical model has been developed to estimate the common climate signal in the differ-ent accumulation records through optimization of the ratio between the variance of the common signal and of the residual. Using this model a common Green-land accumulation record with five years resolution for the past 1800 years has been extracted. The record establishes a climatic record which implies that very dry conditions during the 13th century together with dry and cold spells dur-ing the 14th century may have put extra strain on the Norse population in Green-land and have contributed to their extinction

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take
    corecore