369 research outputs found
Bistability of Slow and Fast Traveling Waves in Fluid Mixtures
The appearence of a new type of fast nonlinear traveling wave states in
binary fluid convection with increasing Soret effect is elucidated and the
parameter range of their bistability with the common slower ones is evaluated
numerically. The bifurcation behavior and the significantly different
spatiotemporal properties of the different wave states - e.g. frequency, flow
structure, and concentration distribution - are determined and related to each
other and to a convenient measure of their nonlinearity. This allows to derive
a limit for the applicability of small amplitude expansions. Additionally an
universal scaling behavior of frequencies and mixing properties is found.
PACS: 47.20.-k, 47.10.+g, 47.20.KyComment: 4 pages including 5 Postscript figure
The effect of skin fatty acids on Staphylococcus aureus
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb,hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS
Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam
The analyzing power for proton-carbon elastic scattering in the
coulomb-nuclear interference region of momentum transfer,
(GeV/, was measured with a 21.7
GeV/ polarized proton beam at the Alternating Gradient Synchrotron of
Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip
amplitude, , was obtained from the analyzing power to be and .Comment: 4 pages, 4 figures and 1 table. Accepted by Physical Review Letter
Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)
An extensive study of three-nucleon force effects in the entire phase space
of the nucleon-deuteron breakup process, for energies from above the deuteron
breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have
been solved rigorously using the modern high precision nucleon-nucleon
potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We
compare predictions for cross sections and various polarization observables
when NN forces are used alone or when the two pion-exchange Tucson-Melbourne
3NF was combined with each of them. In addition AV18 was combined with the
Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the
TM 3NF, more consistent with chiral symmetry. Large but generally model
dependent 3NF effects have been found in certain breakup configurations,
especially at the higher energies, both for cross sections and spin
observables. These results demonstrate the usefulness of the kinematically
complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure
Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Sqrt(s_NN) = 200 GeV
We present charged particle densities as a function of pseudorapidity and
collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For
the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and
N_ch(-4.7<= eta <= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively,
relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair
of participant nucleons is found to increase from peripheral to central
collisions around mid-rapidity. These results constrain current models of
particle production at the highest RHIC energy.Comment: 4 pages, 5 figures; fixed fig. 5 caption; revised text and figures to
show corrected calculation of and ; final version accepted for
publicatio
Pulsed Feedback Defers Cellular Differentiation
Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle
Nucleon-deuteron elastic scattering as a tool to probe properties of three-nucleon forces
Faddeev equations for elastic Nd scattering have been solved using modern NN
forces combined with the Tucson-Melbourne two-pion exchange three-nucleon
force, with a modification thereof closer to chiral symmetry and the Urbana IX
three-nucleon force. Theoretical predictions for the differential cross section
and several spin observables using NN forces only and NN forces combined with
three-nucleon force models are compared to each other and to the existing data.
A wide range of energies from 3 to 200 MeV is covered. Especially at the higher
energies striking three-nucleon force effects are found, some of which are
supported by the still rare set of data, some are in conflict with data and
thus very likely point to defects in those three-nucleon force models.Comment: 30 pages, 14 Postscript figures; now minor changes in figures and
reference
The detection of neutron clusters
A new approach to the production and detection of bound neutron clusters is
presented. The technique is based on the breakup of beams of very neutron-rich
nuclei and the subsequent detection of the recoiling proton in a liquid
scintillator. The method has been tested in the breakup of 11Li, 14Be and 15B
beams by a C target. Some 6 events were observed that exhibit the
characteristics of a multineutron cluster liberated in the breakup of 14Be,
most probably in the channel 10Be+4n. The various backgrounds that may mimic
such a signal are discussed in detail.Comment: 11 pages, 12 figures, LPCC 01-1
Measurement of the vector analyzing power in elastic electron-proton scattering as a probe of double photon exchange amplitudes
We report the first measurement of the vector analyzing power in inclusive
transversely polarized elastic electron-proton scattering at Q^2 = 0.1
(GeV/c)^2 and large scattering angles. This quantity should vanish in the
single virtual photon exchange, plane wave impulse approximation for this
reaction, and can therefore provide information on double photon exchange
amplitudes for electromagnetic interactions with hadronic systems. We find a
non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for
nuclei other than spin 0 have been carried out in these kinematics, and the
calculation using the spin orbit interaction from a charged point nucleus of
spin 0 cannot describe these data.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Baryon polarization in low-energy unpolarized meson-baryon scattering
We compute the polarization of the final-state baryon, in its rest frame, in
low-energy meson--baryon scattering with unpolarized initial state, in
Unitarized BChPT. Free parameters are determined by fitting total and
differential cross-section data (and spin-asymmetry or polarization data if
available) for , and scattering. We also compare our
results with those of leading-order BChPT
- …
