89 research outputs found
Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project
We report on the vertical distributions of Saharan dust aerosols over the N.E. Mediterranean region, which were obtained during a typical dust outbreak on August 2000, by two lidar systems located in Athens and Thessaloniki, Greece, in the frame of the European EARLINET project. MODIS and ground sun spectrophotometric data, as well as air-mass backward trajectories confirmed the existence of Saharan dust in the case examined, which was also successfully forecasted by the DREAM dust model. The lidar data analysis for the period 2000-2002 made possible, for the first time, an estimation of the vertical extent of free tropospheric dust layers [mean values of the aerosol backscatter and extinction coefficients and the extinction-to-backscatter ratio (lidar ratio, LR) at 355 nm], as well as a seasonal distribution of Saharan dust outbreaks over Greece, under cloud-free conditions. A mean value of the lidar ratio at 355 nm was obtained over Athens (53±1 sr) and over Thessaloniki (44±2 sr) during the Saharan dust outbreaks. The corresponding aerosol optical thickness (AOT) at 355 nm, in the altitude range 0-5 km, was 0.69±0.12 and 0.65±0.10 for Athens and Thessaloniki, respectively (within the dust layer the AOT was 0.23 and 0.21, respectively). Air-mass back-trajectory analysis performed in the period 2000-2002 for all Saharan dust outbreaks over the N.E. Mediterranean indicated the main pathways followed by the dust aerosols
Robust Online Monitoring of Signal Temporal Logic
Signal Temporal Logic (STL) is a formalism used to rigorously specify
requirements of cyberphysical systems (CPS), i.e., systems mixing digital or
discrete components in interaction with a continuous environment or analog com-
ponents. STL is naturally equipped with a quantitative semantics which can be
used for various purposes: from assessing the robustness of a specification to
guiding searches over the input and parameter space with the goal of falsifying
the given property over system behaviors. Algorithms have been proposed and
implemented for offline computation of such quantitative semantics, but only
few methods exist for an online setting, where one would want to monitor the
satisfaction of a formula during simulation. In this paper, we formalize a
semantics for robust online monitoring of partial traces, i.e., traces for
which there might not be enough data to decide the Boolean satisfaction (and to
compute its quantitative counterpart). We propose an efficient algorithm to
compute it and demonstrate its usage on two large scale real-world case studies
coming from the automotive domain and from CPS education in a Massively Open
Online Course (MOOC) setting. We show that savings in computationally expensive
simulations far outweigh any overheads incurred by an online approach
From MTL to deterministic timed automata
In this paper we propose a novel technique for constructing timed automata from properties expressed in the logic MTL, under bounded-variability assumptions. We handle full MTL and in particular do not impose bounds on the future temporal connectives. Our construction is based on separation of the continuous time monitoring of the input sequence and discrete predictions regarding the future. The separation of the continuous from the discrete allows us to further determinize our automata. This leads, for the first time, to a construction from full MTL to deterministic timed automata
Labour Market and Social Policy in Italy: Challenges and Changes. Bertelsmann Policy Brief #2016/02
vEight years after the outbreak of the financial crisis, Italy has still to cope with and
overcome a plethora of economic and social challenges. On top of this, it faces an
unfavourable demographic structure and severe disparities between its northern and
southern regions. Some promising reforms have recently been enacted, specifically
targeting poverty and social exclusion. However, much more remains to be done on
the way towards greater economic stability and widely shared prosperity
Numerical Prediction of Dust
Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions. Scientific observations and results are presented, along with numerous illustrations. This work has an interdisciplinary appeal and will engage scholars in geology, geography, chemistry, meteorology and physics, amongst others with an interest in the Earth system and environmental change
A marine biogenic source of atmospheric ice nucleating particles
The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties1,2. The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Sea spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer12-19. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice nucleating material is likely biogenic and less than ~0.2 μm in size. We find that exudates separated from cells of the marine diatom T. Pseudonana nucleate ice and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol in combination with our measurements suggest that marine organic material may be an important source of ice nucleating particles in remote marine environments such as the Southern Ocean, North Pacific and North Atlantic
Optical characteristics of desert dust over the East Mediterranean during summer: a case study
Fully Dynamic High–Resolution Model for Dispersion of Icelandic Airborne Mineral Dust
Icelandic topsoil sediments, as confirmed by numerous scientific studies, represent the largest and the most important European source of mineral dust. Strong winds, connected with the intensive cyclonic circulation in the North Atlantic, induce intense emissions of mineral dust from local sources all year and carry away these fine aerosol particles for thousands of kilometers. Various impacts of airborne mineral dust particles on local air quality, human health, transportation, climate and marine ecosystems motivated us to design a fully dynamic coupled atmosphere–dust numerical modelling system in order to simulate, predict and quantify the Icelandic mineral dust process including: local measurements and source specification over Iceland. In this study, we used the Dust Regional Atmospheric Model (DREAM) with improved Icelandic high resolution dust source specification and implemented spatially variable particle size distribution, variable snow cover and soil wetness. Three case studies of intense short- and long-range transport were selected to evaluate the model performance. Results demonstrated the model’s capability to forecast major transport features, such as timing, and horizontal and vertical distribution of the processes. This modelling system can be used as an operational forecasting system, but also as a reliable tool for assessing climate and environmental Icelandic dust impacts. © 2022 by the authors
- …
