11,748 research outputs found
Prediction of forces and moments for hypersonic flight vehicle control effectors
This research project includes three distinct phases. For completeness, all three phases of the work are briefly described in this report. The goal was to develop methods of predicting flight control forces and moments for hypersonic vehicles which could be used in a preliminary design environment. The first phase included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicated the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was conducted in which a better understanding was sought for the reasons behind the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. This second phase involved using computational fluid dynamics methods to examine the flow fields in detail. Through these detailed predictions, the deficiencies in the simple surface inclination methods were determined. In the third phase of this work, an improvement to the surface inclination methods was developed. This used a novel method for including viscous effects by modifying the geometry to include the viscous/shock layer
Measuring gravitational lens time delays using low-resolution radio monitoring observations
Obtaining lensing time delay measurements requires long-term monitoring
campaigns with a high enough resolution (< 1 arcsec) to separate the multiple
images. In the radio, a limited number of high-resolution interferometer arrays
make these observations difficult to schedule. To overcome this problem, we
propose a technique for measuring gravitational time delays which relies on
monitoring the total flux density with low-resolution but high-sensitivity
radio telescopes to follow the variation of the brighter image. This is then
used to trigger high-resolution observations in optimal numbers which then
reveal the variation in the fainter image. We present simulations to assess the
efficiency of this method together with a pilot project observing radio lens
systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very
Large Array (VLA) observations. This new method is promising for measuring time
delays because it uses relatively small amounts of time on high-resolution
telescopes. This will be important because instruments that have high
sensitivity but limited resolution, together with an optimum usage of followup
high-resolution observations from appropriate radio telescopes may in the
future be useful for gravitational lensing time delay measurements by means of
this new method.Comment: 10 pages, 7 figures, accepted by MNRA
The growth of galaxies in cosmological simulations of structure formation
We use hydrodynamic simulations to examine how the baryonic components of
galaxies are assembled, focusing on the relative importance of mergers and
smooth accretion in the formation of ~L_* systems. In our primary simulation,
which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark
matter universe, the space density of objects at our (64-particle) baryon mass
resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed
galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by
accretion rather than by mergers. At the redshift of peak mass growth, z~2,
accretion dominates over merging by about 4:1. The mean accretion rate per
galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the
merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is
about 2:1. We cannot distinguish truly smooth accretion from merging with
objects below our mass resolution threshold, but extrapolating our measured
mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that
sub-resolution mergers would add relatively little mass. The global star
formation history in these simulations tracks the mass accretion rate rather
than the merger rate. At low redshift, destruction of galaxies by mergers is
approximately balanced by the growth of new systems, so the comoving space
density of resolved galaxies stays nearly constant despite significant mass
evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1
agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift
surveys.Comment: Submitted to ApJ, 35 pp including 15 fig
Two-Dimensional Hydrodynamic Simulations of Convection in Radiation-Dominated Accretion Disks
The standard equilibrium for radiation-dominated accretion disks has long
been known to be viscously, thermally, and convectively unstable, but the
nonlinear development of these instabilities---hence the actual state of such
disks---has not yet been identified. By performing local two-dimensional
hydrodynamic simulations of disks, we demonstrate that convective motions can
release heat sufficiently rapidly as to substantially alter the vertical
structure of the disk. If the dissipation rate within a vertical column is
proportional to its mass, the disk settles into a new configuration thinner by
a factor of two than the standard radiation-supported equilibrium. If, on the
other hand, the vertically-integrated dissipation rate is proportional to the
vertically-integrated total pressure, the disk is subject to the well-known
thermal instability. Convection, however, biases the development of this
instability toward collapse. The end result of such a collapse is a gas
pressure-dominated equilibrium at the original column density.Comment: 10 pages, 7 figures, accepted for publication in ApJ. Please send
comments to [email protected]
Impact of food, alcohol and pH on modified-release hydrocortisone developed to treat congenital adrenal hyperplasia.
BACKGROUND: We developed a modified-release hydrocortisone, Chronocort®, to replace the cortisol rhythm in patients with congenital adrenal hyperplasia. Food, alcohol and pH affect drug absorption and it is important to assess their impact when replicating a physiological rhythm. SUBJECTS AND METHODS: In vitro dissolution to study impact of alcohol and pH on Chronocort®. A Phase 1, three-period, cross over study in 18 volunteers to assess the impact of food on Chronocort® and to compare bioavailability to immediate-release hydrocortisone. RESULTS: In vitro dissolution of Chronocort® was not affected by gastrointestinal pH up to 6.0 nor by an alcohol content up to 20 % v/v. Food delayed and reduced the rate of absorption of Chronocort® as reflected by a longer Tmax (fed vs fasted: 6.75 hrs vs 4.5 hrs, p=0005) and lower Cmax (549.49 vs 708.46, nmol/L, ratio 77% with CI 71 - 85). Cortisol exposure was similar in fed and fasted state: Geo LSmean ratio (CI) AUC0 t for fed/fasted was 108.33% (102.30 - 114.72%). Cortisol exposure was higher for Chronocort® compared to immediate-release hydrocortisone: Geo LSmean ratios (CI) 118.83% (111.58 - 126.54%); however, derived free cortisol showed cortisol exposure CIs were within 80.0 125.0 %: Geo LSmean ratio (CI) for AUC0 t 112.73% (105.33 - 120.65%). CONCLUSIONS: Gastric pH ≤ 6.0 and alcohol do not effect hydrocortisone release from Chronocort®. Food delays Chronocort® absorption but cortisol exposure is similar in the fasted and fed state and exposure as assessed by free cortisol is similar between Chronocort® and immediate-release hydrocortisone
Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model
Cyclic dominance of species has been identified as a potential mechanism to
maintain biodiversity, see e.g. B. Kerr, M. A. Riley, M. W. Feldman and B. J.
M. Bohannan [Nature {\bf 418}, 171 (2002)] and B. Kirkup and M. A. Riley
[Nature {\bf 428}, 412 (2004)]. Through analytical methods supported by
numerical simulations, we address this issue by studying the properties of a
paradigmatic non-spatial three-species stochastic system, namely the
`rock-paper-scissors' or cyclic Lotka-Volterra model. While the deterministic
approach (rate equations) predicts the coexistence of the species resulting in
regular (yet neutrally stable) oscillations of the population densities, we
demonstrate that fluctuations arising in the system with a \emph{finite number
of agents} drastically alter this picture and are responsible for extinction:
After long enough time, two of the three species die out. As main findings we
provide analytic estimates and numerical computation of the extinction
probability at a given time. We also discuss the implications of our results
for a broad class of competing population systems.Comment: 12 pages, 9 figures, minor correction
Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale
International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada-US border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)
Typical performance of low-density parity-check codes over general symmetric channels
Typical performance of low-density parity-check (LDPC) codes over a general
binary-input output-symmetric memoryless channel is investigated using methods
of statistical mechanics. Theoretical framework for dealing with general
symmetric channels is provided, based on which Gallager and MacKay-Neal codes
are studied as examples of LDPC codes. It has been shown that the basic
properties of these codes known for particular channels, including the property
to potentially saturate Shannon's limit, hold for general symmetric channels.
The binary-input additive-white-Gaussian-noise channel and the binary-input
Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte
Sampling constrained probability distributions using Spherical Augmentation
Statistical models with constrained probability distributions are abundant in
machine learning. Some examples include regression models with norm constraints
(e.g., Lasso), probit, many copula models, and latent Dirichlet allocation
(LDA). Bayesian inference involving probability distributions confined to
constrained domains could be quite challenging for commonly used sampling
algorithms. In this paper, we propose a novel augmentation technique that
handles a wide range of constraints by mapping the constrained domain to a
sphere in the augmented space. By moving freely on the surface of this sphere,
sampling algorithms handle constraints implicitly and generate proposals that
remain within boundaries when mapped back to the original space. Our proposed
method, called {Spherical Augmentation}, provides a mathematically natural and
computationally efficient framework for sampling from constrained probability
distributions. We show the advantages of our method over state-of-the-art
sampling algorithms, such as exact Hamiltonian Monte Carlo, using several
examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian
bridge regression, reconstruction of quantized stationary Gaussian process, and
LDA for topic modeling.Comment: 41 pages, 13 figure
- …
