The standard equilibrium for radiation-dominated accretion disks has long
been known to be viscously, thermally, and convectively unstable, but the
nonlinear development of these instabilities---hence the actual state of such
disks---has not yet been identified. By performing local two-dimensional
hydrodynamic simulations of disks, we demonstrate that convective motions can
release heat sufficiently rapidly as to substantially alter the vertical
structure of the disk. If the dissipation rate within a vertical column is
proportional to its mass, the disk settles into a new configuration thinner by
a factor of two than the standard radiation-supported equilibrium. If, on the
other hand, the vertically-integrated dissipation rate is proportional to the
vertically-integrated total pressure, the disk is subject to the well-known
thermal instability. Convection, however, biases the development of this
instability toward collapse. The end result of such a collapse is a gas
pressure-dominated equilibrium at the original column density.Comment: 10 pages, 7 figures, accepted for publication in ApJ. Please send
comments to [email protected]