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Typi
al performan
e of low-density parity-
he
k 
odesover general symmetri
 
hannelsToshiyuki Tanaka1,2 and David Saad21Department of Ele
troni
s and Information Engineering, Tokyo Metropolitan University,1-1 Minami-Osawa, Ha
hioji-shi, Tokyo, 192-0397 Japan2Neural Computing Resear
h Group, Aston University,Aston Triangle, Birmingham, B4 7ET, United Kingdom(Dated: April 29, 2002)Typi
al performan
e of low-density parity-
he
k (LDPC) 
odes over a general binary-inputoutput-symmetri
 memoryless 
hannel is investigated using methods of statisti
al me
hani
s. Theo-reti
al framework for dealing with general symmetri
 
hannels is provided, based on whi
h Gallagerand Ma
Kay-Neal 
odes are studied as examples of LDPC 
odes. It has been shown that the ba-si
 properties of these 
odes known for parti
ular 
hannels, in
luding the property to potentiallysaturate Shannon's limit, hold for general symmetri
 
hannels. The binary-input additive-white-Gaussian-noise 
hannel and the binary-input Lapla
e 
hannel are 
onsidered as spe
i�
 
hannelnoise models.I. INTRODUCTIONWe investigate the typi
al performan
e of low-densityparity-
he
k (LDPC) 
odes over a general binary-inputoutput-symmetri
 (BIOS) memoryless 
hannel. Previousstatisti
al physi
s based analyses of LDPC 
odes havedis
overed some interesting properties, in
luding the fa
tthat they 
an, in prin
iple, saturate the information-theoreti
 upper bound (Shannon's bound de�ned bythe 
hannel 
oding theorem [1℄) with low 
onne
tivityvalues. Existing statisti
al me
hani
al studies on theLDPC 
odes, however, have been mostly 
on�ned tothe 
ase of binary symmetri
 
hannel (BSC), whi
h �tsinto the statisti
al-me
hani
al framework in a naturalway [2, 3, 4, 5℄. Notable ex
eptions are the work byMontanari [6℄ that dis
usses the 
ase of binary-inputadditive-white-Gaussian-noise 
hannel (BIAWGNC) aswell as the BSC 
ase and the study of Sourlas 
odes [7℄,a simple LDPC 
ode, in whi
h non-BSC 
hannels are ad-dressed [8, 9, 10℄. From the statisti
al-me
hani
al pointof view, LDPC 
odes are regarded as random spin sys-tems; it is therefore natural to expe
t that they will ex-hibit some sort of universality, just as typi
al statisti
al-me
hani
al systems do, so that general properties ofLDPC 
odes observed in the BSC 
ase will be preservedwhen di�erent 
ommuni
ation 
hannels are 
onsidered.In this paper we investigate the properties of LDPC
odes in binary-input output-symmetri
 
hannels andshow that this is generally the 
ase. In parti
ular, weshow that the �nite 
onne
tivity LDPC 
odes 
an satu-rate Shannon's bound for general BIOS 
hannel.The paper is organized as follows: In se
tion II weintrodu
e the general framework, notation, 
odes and the
hannels that we will fo
us on. In se
tion III we willbrie
y des
ribe the 
al
ulation for the various 
hannels,while the results obtained will be des
ribed in se
tion IV,followed by the 
on
lusions.

II. THE GENERAL FRAMEWORKA. Symmetri
 
hannelsWe 
onsider the general 
lass of binary-input output-symmetri
 (BIOS) memoryless 
hannel. The input of the
hannel is binary (�1), and the output may take any realvalue. The 
hara
teristi
s of a 
hannel is des
ribed by the
hannel transition probabilities, P (yjx = 1) and P (yjx =�1). Let p(y) � P (yjx = 1). A symmetri
 
hannel is
hara
terized as a 
hannel whose transition probabilitiessatisfy P (yjx = �1) = P (�yjx = 1) = p(�y). Varioustypes of 
hannel models of pra
ti
al interest fall into the
lass of BIOS 
hannels, in
luding the binary symmetri

hannel (BSC)pBSC(y) = (1� p)Æ(y � 1) + pÆ(y + 1); (1)the binary-input additive-white-Gaussian-noise 
hannel(BIAWGNC)pBIAWGNC(y) = 1p2��2 e�(y�1)2=2�2 ; (2)and the binary-input Lapla
e 
hannel (BILC)pBILC(y) = 1�e�jy�1j=�; (3)Ea
h of the parameters p, �2, and � represents the degreeof degradation indu
ed by the 
hannel noise. We 
all ea
hof them the noise level and let d denotes the generi
 one.An apparent te
hni
al diÆ
ulty in dealing with a gen-eral 
hannel of real-valued output is that it is not at allobvious how to de�ne the syndrome from the re
eivedsignal: The modulo 2 arithmeti
 involved in 
omputingsyndrome in the BSC 
ase is not dire
tly appli
able tothe 
ases of real-valued re
eived signal. This diÆ
ulty isresolved by using a trun
ation pro
edure [11℄: We 
on-
eptually 
onsider another �
titious binary-input binary-output 
hannel in addition to the 
hannel under study.
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2Let r be the (�
titious) output symbol of this �
titious
hannel. We 
an assign to r either of the values �1 arbi-trarily, and the binary 
hannel noise � for the �
titious
hannel is de�ned therefrom, via r = x�. For the sakeof making the argument simple, we assign r = 1 withoutloss of generality. Sin
e the prior probability of � (be-fore re
eiving y) should be P (� = �1) = 1=2, the jointdistribution of y and � is given byP (y; �) = p(�y)2 (4)sin
e the trun
ation pro
edure used here yields x = �.B. Gallager 
odeLDPC 
odes have been originally introdu
ed by Gal-lager in his seminal work from 1963 [12℄. Gallager's orig-inal 
onstru
tion [12℄ is one of the most extensively stud-ied LDPC 
odes in the information theory literature. Itis de�ned by its parity-
he
k matrix A = [C1jC2℄ of di-mensionality (M �N )�M , whi
h is taken to be randomand very sparse. The submatrix C2, of dimensionality(M � N )� (M �N ), is assumed invertible.In the en
oding step, the en
oder 
omputes a 
odewordfrom the information ve
tor � 2 f0; 1gN by employing agenerator matrix Gx = GT� mod 2; (5)where the generator matrix is de�ned byG = [IjC�12 C1℄ mod 2: (6)This 
onstru
tion ensures AGT = 0 mod 2. The infor-mation 
ode rate for unbiased messages is R = N=M .In regular Gallager 
odes, the number of non-zero ele-ments per row of A is �xed to be K. We 
all it the row
onstraint. Average number of non-zero elements per 
ol-umn is then C � K(M�N )=M , whereas we will 
onsiderthe 
ase in whi
h the number of non-zero elements in ea
h
olumn is for
ed to be exa
tly C, whi
h we term the 
ol-umn 
onstraint. Irregular Gallager 
odes 
an be de�nedby relaxing these 
onstraints. It has been known thatmaking 
ode 
onstru
tion irregular may improve perfor-man
e signi�
antly [13℄, but we will not dis
uss irregular
odes in the 
urrent paper. We 
all the resulting regularGallager 
ode a (C;K)-Gallager 
ode.C. MN 
odeWe also dis
uss a variant of LDPC 
odes, 
alled theMN 
ode [11, 14℄. The generator matrix GT of the MN
ode is de�ned byGT = C�1n Cs mod 2; (7)

where Cs and Cn are sparse matri
es of dimensionalityM �N and M �M , respe
tively; Cn is assumed invert-ible. The information rate for the 
ode is R = N=M forunbiased message.In regular MN 
odes the row and 
olumn 
onstraintsare imposed on both matri
es Cs and Cn. The numberof non-zero elements per row of Cs and Cn should be ex-a
tly K and L, respe
tively. Also here, we do not dis
ussirregular MN 
odes [15℄ in this paper. The number ofnon-zero elements per 
olumn of Cs and Cn are set to Cand L, respe
tively, where C = KM=N holds. We 
allthe resulting 
ode a (K;C;L)-MN 
ode.III. ANALYSISA. Gallager 
odeThe basi
 idea behind the statisti
al-me
hani
al treat-ment of the LDPC 
odes is the equivalen
e between thede
oding problem and the thermal equilibrium distribu-tion of a dilute Ising spin system. In order to see thisin the Gallager 
ode 
ase, one should �rst note that thede
oding problem is to �nd � whi
h is best supported(i.e., most probable) by the re
eived signal y among theset of � satisfying the parity-
he
k equation (A� = A�mod 2 if we write it in the f0; 1g-notation). The set isexpressed as�� ���� lim
!1 exp��
 M�NX�=1 �J� Yj2L(�) �j � 1�� = 1�; (8)where L(�) = fjjA�j = 1g (9)denotes the set of indi
es for whi
h the parity-
he
k ma-trix A has 1's in �-th row, andJ� = Yj2L(�) �j (10)is �-th 
he
k. The posterior probability of � 
ondi-tioned on the re
eived signal y then a
quires the followingGibbs-Boltzmann form:P
(� jy) = 1Z exp���H
 (� ;y;J)� (11)in whi
h we have to take the limit 
 ! 1 and 
onsiderit at � = 1 (Nishimori's temperature [8, 16, 17, 18℄)in order to obtain the true posterior. The HamiltonianH
(� ;y;J) is de�ned asH
(� ;y;J) = �
 M�NX�=1 �J� Yj2L(�) �j � 1�� MXj=1 log p(�jyj); (12)



3The 
hannel 
hara
teristi
s enters into the Hamiltonianas the term logp(�jyj) whi
h, by noting that �j takes �1,
an be rewritten aslogp(�jyj) = �j 12 log p(yj)p(�yj) + 12 log p(yj)p(�yj): (13)From this expression it immediately follows that it is thelog-likelihood ratio hj � (1=2) log(p(yj)=p(�yj)) of the
hannel noise yj whi
h serves as the external �eld a
tingon site j, and that the 
hannel 
hara
teristi
s de�nes the�eld distribution. Analyzing the e�e
t of having di�erent
ommuni
ation 
hannels on the 
ode properties, there-fore redu
es to investigating the e�e
t of di�erent �elddistributions on the physi
al properties of the system.The �eld distributions p(h) for various 
hannel modelsare as follows:� BSC:pBSC(h) = (1� p)Æ�h� 12 log 1� pp �+ pÆ�h+ 12 log 1� pp � (14)� BIAWGNC:pBIAWGNC(h) =r�22�e�(h���2)2=2��2 (15)� BILC:pBILC(h) = 12Æ(h� ��1) + e�2��12 Æ(h+ ��1)+ �[���1 < h < ��1℄ 12eh���1 ; (16)where �[X℄ is the indi
ator fun
tion, taking 1 whenX is true and 0 otherwise.Sket
hes of these �eld distributions are given in Fig. 1.We assume that the free energy of the system is self-averaging, that is,f = � 1� limM!1M�1hlogZiA;y; (17)and evaluate the average h�iA;y over the re
eived signal yand the randomness of the parity-
he
k matrix A usingthe repli
a method,f = � 1� limM!1 limn!0M�1 ��n loghZniA;y: (18)In 
al
ulating the free energy, we perform the gaugetransformation �j ! �j�j , yj ! �jyj . The average over y
an be taken with respe
t toQMj=1 p(yj) after having per-formed the gauge transformation. We have to introdu
ea random tensor to take average over A.

0

1-p

p(a) BSC
0 1/σ 2(b) BIAWGNC
0

1/2

1/λ-1/λ (
) BILCFIG. 1: Field distributions 
orresponding to various BIOS
hannels.Following basi
ally the same pro
edure as in [3℄ andex
hanging the order of the two limits, taking the limitM !1 �rst, one obtainsf = � 1� limn!0 ��n Extrq;q̂ �CK G1(q)�G2(q; q̂)+G3(q̂)�; (19)whereG1(q) � log nXm=0 Xh�1����mi qK�1����m � n log 2;G2(q; q̂) � nXm=0 Xh�1����mi q�1����m q̂�1����m ;G3(q̂) � log" X�1 ;:::;�n * nY�=1p(��y)+y� 1C!� nXm=0 Xh�1����mi q̂�1����m��1 � � ���m�C#:(20)



4To pro
eed further we adopt the repli
a-symmetri
(RS) ansatz and letq�1����m = q0 Z um�(u) du; q̂�1����m = q̂0 Z ûm�̂(û) dû:(21)We will use the following simplifying notation.�K(u) du � KYj=1�(uj) duj (22)The repli
a-symmetri
 free energy fRS be
omesfRS = 1� Extr�;�̂ (CK log 2+ C ZZ log(1 + uû)�(u) �̂(û) du dû� CK Z log�1 + KYj=1uj��K(u) du� Z �log�p(y) CYl=1(1 + ûl) + p(�y) CYl=1(1� ûl)��y� �̂C(û) dû); (23)in whi
h q0 and q̂0 have been eliminated using the extrem-ization 
ondition q0q̂0 = C. Heuristi
 
onstru
tion of asuÆ
ient 
ondition to the extremization problem with re-spe
t to � and �̂ is possible, and it gives the followingsaddle-point equations.�(u) = Z �Æ�u� tanh�h(y) + C�1Xl=1 tanh�1 ûl���y� �̂C�1(û) dû�̂(û) = Z Æ�û� K�1Yj=1 uj��K�1(u) du (24)We have let h(y) � 12 log p(y)p(�y) : (25)The performan
e of the 
ode is quanti�ed by the overlapm = M�1PMk=1 �jh�ji, whi
h is given asm = Z sign(z)P (z) dz; (26)whereP (z) = Z �Æ�z � tanh�h(y) + CXl=1 tanh�1 ûl���y� �̂C(û) dû: (27)

B. MN 
odeThe de
oding problem for the MN 
ode is to �nd S and� whi
h are the best suitable in view of the re
eived signaly among the sets of S and � satisfying the parity-
he
kequation (CsS + Cn� = Cs� + Cn� mod 2 if written inthe f0; 1g-notation). De�ning the �th 
omponent of the
he
k J as J� = Yj2Ls(�) �j Yl2Ln(�) �l; (28)whereLs(�) = fjj(Cs)�j = 1g; Ln(�) = flj(Cn)�l = 1g;(29)the posterior probability of S and � 
onditioned on there
eived signal y and the 
he
k J is given byP
(S; � jy;J) = 1Z exp���H
 (S; � ;y;J)�; (30)in the limit 
 !1 and at � = 1, where the HamiltonianH
(S; � ;y;J) is de�ned asH
(S; � ;y;J) = �
 MX�=1�J� Yj2Ls(�)Sj Yl2Ln (�) �l � 1�� Fs NXj=1 Sj � MXl=1 log p(�lyl); (31)where Fs is a parameter representing the bias of the in-formation ve
tor � in su
h a way that P (�j = �1) =(1�tanhFs)=2 holds. The form of Eq. (31) 
learly showsthat the 
hannel 
hara
teristi
s again a
ts as random�eld on f�lg, where the log likelihood ratio gives the a
-tual value of the �eld.The repli
a 
al
ulation 
an be done along the same wayas in the 
ase of the Gallager 
ode. We have performedthe gauge transformation Sj ! �jSj , �j ! �j�j, andyj ! �j�j . The free energy f be
omesf = � 1� limn!0 ��n Extrq;q̂;r;r̂�CK G1(q; r)� G2(q; q̂; r; r̂) + G3(q̂; r̂)�;(32)where G1(q; r) � log nXm=0 Xh�1����mi qK�1����mrL�1����m� n log 2;G2(q; q̂; r; r̂) � nXm=0 Xh�1����mi q�1����m q̂�1����m+ MN nXm=0 Xh�1����mi r�1����m r̂�1����m ;(33)



5andG3(q̂; r̂) � log" XS1;:::;SnDeFsPn�=1 �S�E�� 1C!� nXm=0 Xh�1����m îq�1����mS�1 � � �S�m�C#+ MN log" X�1 ;:::;�n� nY�=1p(��y)�y� 1L!� nXm=0 Xh�1����m îr�1����m��1 � � ���m�L#:(34)We adopt the RS ansatz as before, under whi
h wehaver�1����m = r0 Z vm�(v) dv; r̂�1����m = r̂0 Z v̂m�̂(v̂) dv̂;(35)in addition to Eq. (21). The repli
a-symmetri
 free en-ergy fRS be
omesfRS = 1� Extr�;�̂;�;�̂(CK log 2+ C ZZ log(1 + uû)�(u) �̂(û) du dû+ CLK ZZ log(1 + vv̂) �(v) �̂(v̂) dv dv̂� CK ZZ log�1 + KYk=1uk LYl=1 vl�� �K(u) du �L(v) dv� Z �log� XS=�1 eFs�S CYk=1(1 + Sûk)����̂C(û) dû� CK Z �log� X�=�1 p(�y) LYl=1(1 + � v̂l)��y� �̂L(v̂) dv̂); (36)in whi
h q0, q̂0, r0, and r̂0 have been eliminated usingthe extremization 
onditions, q0q̂0 = C and r0r̂0 = L.Constru
tion of a heuristi
 solution to the extremiza-tion problem 
an be done in the same manner, whi
h

yields the following saddle-point equations:�(u) = Z �Æ�u� tanh�Fs� + C�1Xl=1 tanh�1 ûl����� �̂C�1(û) du�̂(û) = ZZ Æ�û� K�1Yk=1 uk LYl=1 vl��K�1(u) du �L(v) dv�(v) = Z �Æ�v � tanh�h(y) + L�1Xl=1 tanh�1 v̂l���y� �̂L�1(v̂) dv̂�̂(v̂) = ZZ Æ�v̂ � KYk=1uk L�1Yl=1 vl��K(u) du �L�1(v) dv(37)The overlap is then evaluated bym = Z sign(z)P (z) dz; (38)whereP (z) = Z �Æ�z � tanh�Fs� + CXl=1 tanh�1 ûl����� �̂C(û) dû: (39)It is worthwhile mentioning that, when the messageis unbiased (Fs = 0) and K is even, saddle-pointsolutions have the following symmetry: For ea
h so-lution f�(u); �̂(û); �(v); �̂(v̂)g there is another solutionf�(�u); �̂(�û); �(v); �̂(v̂)g. The latter has the same over-lap as that of the former with the opposite sign.IV. RESULTSA. Gallager 
ode1. Analyti
al solutionsOf parti
ular interest is the ferromagneti
 state, whi
h
orresponds to an error-free 
ommuni
ation. One 
an seethat the assertion�(u) = Æ(u� 1); �̂(û) = Æ(û� 1) (40)always satis�es the saddle-point equation (24) irrespe
-tive of the values of K and C (provided that K;C � 2),thereby providing a solution. The overlap and the freeenergy of the solution at � = 1 are mferro = 1 andfferro = �hlog p(y)iy , respe
tively. One 
an thereforeidentify this as the ferromagneti
 solution.Another solution, whi
h 
an be found in the limitK !1, is the sub-optimal ferromagneti
 solution�(u) = 
Æ�u� tanhh(y)��y ; �̂(û) = Æ(û); (41)



6for whi
h msf = 
sign�p(y) � p(�y)��y (42)and fsf = CK log 2� 
log�p(y) + p(�y)��y: (43)The di�eren
e of the free energy is expressed asfsf � fferro = C�R log 2; (44)where C is the 
hannel 
apa
ity of the BIOS 
hannel de-�ned asC = log2� 
log�p(y) + p(�y)��y + 
logp(y)�y: (45)This proves that the thermodynami
 transition betweenthe ferromagneti
 and sub-optimal ferromagneti
 solu-tions (no other solution has been identi�ed in this 
ase)o

urs at the theoreti
al limit. This means that the max-imum rate Rmax, up to whi
h error-free 
ommuni
ationis theoreti
ally possible, asymptoti
ally a
hieves the the-oreti
al limit as K ! 1. This result has been knownfor BSC 
hannel [4, 5℄ in the physi
s literature and is inagreement with results reported in the information the-ory literature [11℄. The 
urrent result is an extension tothe 
ase of a general BIOS 
hannel.2. Numeri
al solutions of saddle-point equationsIn �nite-K 
ases no simple analyti
al solution existsother than the ferromagneti
 one, so one has to solvethe saddle-point equations numeri
ally. We have done itfor BIAWGNC and BILC. The dependen
e of the over-lap m on the noise level d (�2 for BIAWGNC, and �for BILC) is qualitatively the same as that observed inBSC: For K � 3 the ferromagneti
 solution is lo
allystable over the whole range of noise levels. At d = ds,another solution with m < 1 appears, whi
h de�nes thespinodal point. At a higher noise level d = dt > dsthermodynami
 transition takes pla
e, beyond whi
h theferromagneti
 solution with m = 1 be
omes metastable(see Fig. 2). Table I summarizes the results for the BI-AWGNC 
ase, showing the spinodal point �2s (the valueof the varian
e at whi
h new, non ferromagneti
, solu-tions emerge), the thermodynami
 transition point �2t(at whi
h the thermodynami
 transition o

urs), and �20,the information-theoreti
 upper bound of the varian
eallowing error-free 
ommuni
ation.Table II summarizes the results for the BILC 
ase,showing the values of the spinodal point �s, the ther-modynami
 transition point �t, and the information-theoreti
 upper bound �0.It should be noted that the results for the spinodalpoint agree well with the results obtained by the densityevolution approa
h [19℄, as expe
ted, sin
e the saddle-point equations by the repli
a analysis happen to 
oin
idewith the time evolution equations in the density evolu-tion.

0

1
m

dds dtFIG. 2: Noise-overlap diagram for Gallager 
ode. Thi
k solidlines stand for the stable state, thin solid lines for metastablestate, and broken lines for unstable states. The ferromagneti
solution is 
hara
terized by the m = 1 solution, while m < 1de�nes the suboptimal ferromagneti
 solution.TABLE I: The varian
es �2s and �2t at the spinodal point andthermodynami
 transition, respe
tively, for the BIAWGNCfor various 
ode parameters; �20 , denoting the information-theoreti
al upper bound for error-free 
ommuni
ation, is alsoshown.C K R �2s �2t �203 6 0:5 0:775 0:899 0:9584 8 0:5 0:701 0:943 0:9585 10 0:5 0:629 0:952 0:9583 5 0:4 1:017 1:253 1:3214 6 0:333 1:020 1:666 1:6813 4 0:25 1:598 2:325 2:401B. MN 
ode1. Analyti
al solutionsIn the following we restri
t our dis
ussion of the MN
ode to the unbiased 
ase Fs = 0. The ferromagneti
TABLE II: The parameter values �s and �t at the spin-odal point and thermodynami
 transition, respe
tively, forthe BILC with various 
ode parameters; �0, denoting theinformation-theoreti
al upper bound for error-free 
ommuni-
ation, is also shown.C K R �s �t �03 6 0:5 0:651 0:712 0:7524 8 0:5 0:618 0:741 0:7525 10 0:5 0:581 0:746 0:7523 5 0:4 0:773 0:875 0:9144 6 0:333 0:782 1:045 1:0553 4 0:25 1:018 1:260 1:298



7solution, 
orresponding to the error-free 
ommuni
ation,
an be 
onstru
ted for the MN 
ode with L � 2. (Infa
t, in the 
ase L = 1 the matrix Cn redu
es to a simplepermutation matrix, so that we have to estimate ea
helement of noise separately. This 
ase is not at all inter-esting and therefore we will not dis
uss it any more.) Itis given by �(u) = Æ(u� 1); �̂(û) = Æ(û� 1);�(v) = Æ(v � 1); �̂(v̂) = Æ(v̂ � 1); (46)for whi
h mferro = 1 andfferro = �CK 
logp(y)�y: (47)The MN 
ode has the following paramagneti
 solutionfor K � 2:�(u) = Æ(u); �̂(û) = Æ(û);�(v) = 
Æ�v � tanhh(y)��y ; �̂(v̂) = Æ(v̂); (48)whi
h yields mpara = 0 andfpara = �CK � 1� log 2� CK 
log�p(y) + p(�y)��y: (49)Again, sin
e fpara � fferro = CK (C� R log 2) (50)holds, we 
on
lude that for the MN 
ode the maximumrate Rmax, theoreti
ally allowing error-free 
ommuni
a-tion, a
hieves the theoreti
al limit as long as K � 2,L � 2, provided that there is no lo
ally stable solu-tion other than the ferromagneti
 and paramagneti
 so-lutions. This result is an extension of the result reportedin [2, 3℄ to the 
ase of a general BIOS 
hannel.It should be noted that the paramagneti
 solution (46)is also valid in the limit L!1 for the 
ase K = 1. Thismeans that the above-mentioned result also holds for the
ase of K = 1 asymptoti
ally in the limit L!1.2. Numeri
al solutions of saddle-point equationsIn order to explore solutions other than the ferromag-neti
 and paramagneti
 solutions, we have to solve thesaddle-point equations numeri
ally. We have done it forthe BIAWGNC and BILC 
ases. We observed qualita-tively the same 
hara
teristi
s as those reported in [3℄.The obtained numeri
al results suggest that the quali-tative physi
al properties are 
ategorized into three typesa

ording to the K value: 
ases with K = 1, K = 2 andK � 3, whereas it is only a�e
ted quantitatively by thevalues of C and L, as des
ribed in the following.The stru
ture of noise-overlap diagram for the MN
ode with K = 1 is qualitatively the same as that forGallager 
ode (see Fig. 2): At very low noise level only

TABLE III: The varian
es �2s, �2t , and �2b at the spinodalpoint and thermodynami
 transition, and at bifur
ation ofparamagneti
 solution, respe
tively, for (K;C;L)-MN 
odesover the BIAWGNC and various 
ode parameters; �20, de-noting the information-theoreti
al upper bound for error-free
ommuni
ation, is also shown.K C L R �2s �2t �2b �201 2 3 0:5 0:775 0:901 � 0:9581 2 4 0:5 0:703 0:944 � 0:9581 2 5 0:5 0:630 0:955 � 0:9581 3 2 0:333 1:338 1:423 � 1:6811 3 3 0:333 1:129 1:659 � 1:6811 3 4 0:333 0:913 1:672 � 1:6812 3 2 0:667 0:536 0:587 0:612 0:5882 3 3 0:667 0:430 0:588 0:459 0:5882 3 4 0:667 0:368 0:588 0:385 0:5882 4 2 0:5 0:809 0:958 0:919 0:9582 5 2 0:4 1:039 1:321 1:175 1:321TABLE IV: The parameter values �s, �t, and �b at the spin-odal point and thermodynami
 transition, and at bifur
a-tion of paramagneti
 solution, respe
tively, for (K;C;L)-MN
odes over the BILC and various 
ode parameters; �0, de-noting the information-theoreti
al upper bound for error-free
ommuni
ation, is also shown.K C L R �s �t �b �01 2 3 0:5 0:652 0:714 � 0:7521 2 4 0:5 0:619 0:740 � 0:7521 2 5 0:5 0:582 0:748 � 0:7521 3 2 0:333 0:903 0:934 � 1:0551 3 3 0:333 0:831 1:040 � 1:0551 3 4 0:333 0:735 1:051 � 1:0552 3 2 0:667 0:525 0:551 0:597 0:5532 3 3 0:667 0:464 0:553 0:493 0:5532 3 4 0:667 0:419 0:553 0:437 0:5532 4 2 0:5 0:689 0:751 0:771 0:7522 5 2 0:4 0:807 0:914 0:894 0:914the ferromagneti
 solution with m = 1 exists. At a
ertain noise level d = ds another metastable solutionwith m < 1 appears, and it be
omes dominant beyondd = dt > ds. Sin
e the latter solution is obtained only nu-meri
ally, there is no guarantee that the thermodynam-i
al transition dt is equal to the information-theoreti
allimit d0. Numeri
al results show that in general dt issmaller than d0: However, it is also observed that, for�xed C, in
reasing L makes ds smaller and dt larger, thelatter of whi
h approa
hes the information-theoreti
allimit d0 as L!1, as dis
ussed at the end of the previ-ous subse
tion. Even for �nite L the value of dt may benumeri
ally very 
lose to d0, espe
ially when the rate Ris small. These properties have already been reported forthe BSC 
ase [3℄, so that our �nding implies that theyalso hold for the BIAWGNC and BILC 
ases, revealingsome sort of universality.The noise-overlap diagram for the 
ases with K = 2
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0

1
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m

dds dt db(b)FIG. 3: Noise-overlap diagram for the 
ases with K = 2.has the general stru
ture shown in Fig. 3. The diagramis 
hara
terized by three transition points: the spinodalpoint ds, the thermodynami
 transition dt, and the bifur-
ation point db. The order of the thermodynami
 transi-tion dt and the bifur
ation point db varies with the valuesof C and L, so that the bifur
ation pattern for the 
aseswith K = 2 is further divided into two sub-
ategories de-pending on the order of the two transitions: ds < db < dtfor the �rst group, and ds < dt < db for the se
ondgroup. The noise-overlap diagrams for these groups areillustrated in Fig. 3 (a) and (b), respe
tively. By the lo
alstability analysis the bifur
ation point db is determinedby Z v�(v) dv = (C � 1)�1=L; (51)whi
h allows us to de
ide the type of bifur
ation of a par-ti
ular 
ase. See the appendix for derivation of Eq. (51).As a result, we found that only a few 
ases with smallvalues of C and L fall into the se
ond 
ategory. Thevalues of C and L for whi
h the (2; C; L)-MN 
ode fallinto the se
ond 
ategory depend on the 
hannel 
har-a
teristi
s; as far as we have observed, only the 
ases

0

1
m

ddtFIG. 4: Noise-overlap diagram for the 
ases with K � 3.with L = 2 fall into the se
ond group. For the BI-AWGNC 
ase, the (2; 3; 2)-MN 
ode is the only one in-stan
e, whereas for the BILC 
ase, both (2; 3; 2)- and(2; 4; 2)-MN 
odes belong to this group. (For the BSC
ase, (2; 3; 2)-, (2; 4; 2)-, and (2; 5; 2)-MN 
odes belong tothis group.) All the (2; C; L)-MN 
odes but those men-tioned above are in the �rst group. For the 
ases in these
ond group, the thermodynami
 transition dt must beless than the information-theoreti
 limit d0: However, itturns out numeri
ally that dt is very 
lose to d0.We observed that the noise-overlap diagram for the
ases with K � 3 is relatively simple for the BIAWGNCand BILC 
ases, just as in the BSC 
ase (Fig. 4): Theferromagneti
 solution with m = 1 (and its mirror im-age with m = �1 when K is even) and the paramag-neti
 solution are the only stable solutions found, bothof whi
h are lo
ally stable over the whole range of thenoise level. The system exhibits a �rst-order transitionat the information-theoreti
 limit dt. We did not �nd anysolutions other than the ferromagneti
 and paramagneti
solutions. V. CONCLUSIONSWe have analyzed typi
al performan
e of LDPC 
odesover BIOS 
hannel using statisti
al me
hani
s. We haveshown for the 
ase of LDPC 
odes that the log-likelihoodratio of the re
eived signal serves as an external random�eld a
ting on ea
h site, and that 
hannel 
hara
teristi
sde�ne the distribution of the random �eld. The Gallagerand MN 
odes are analyzed, to �nd that the basi
 proper-ties of these 
odes remain un
hanged regardless of 
han-nel 
hara
teristi
s. In parti
ular, it has been shown thatthese 
odes potentially saturate Shannon's limit asymp-toti
ally, as K ! 1, for the Gallager 
ode; and whenK;L � 2 | with a few ex
eptions with small C andL values | and asymptoti
ally as L ! 1 for K = 1,for the MN 
ode. Saddle-point solutions have also been



9numeri
ally evaluated extensively for the 
ases of BI-AWGNC and BILC 
hannels, from whi
h noise-overlapdiagrams, as well as the transition and bifur
ation points,have been 
hara
terized.A
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knowledged.* APPENDIX A: STABILITY OFPARAMAGNETIC SOLUTION FOR K � 2To probe the stability of paramagneti
 solution, whi
hexists for K � 2, we analyze the stability with respe
t toq and r only, and do not 
onsider stability with respe
t toq̂ and r̂; these 
onjugate variables are subsidiary to their
ounterparts, q and r, respe
tively, so that the formershould not be 
onsidered as independent variables.Let A, B, : : : denote sets of repli
a indi
es su
h ash�1 � � ��mi, m � 1. We �rst evaluate the Hessian of thefree energy (32) with respe
t to 4 � (2n � 1) variablesfqA; q̂A; rA; r̂Ag:H = 0B� Hqq Hqq̂Hqq̂ Hq̂q̂ OO O Hrr̂Hrr̂ Hr̂r̂ 1CA ; (A1)where�Hqq�AB = 8<: 0 (K � 3)�Cq20 �rAr0 �L ÆAB (K = 2)�Hqq̂�AB = ÆAB�Hq̂q̂�AB = �C(C � 1)q̂20 ÆAB�Hrr̂�AB = MN ÆAB�Hr̂r̂�AB = �MN L(L � 1)r̂20 ÆAB (A2)

The blo
k-diagonal stru
ture of the Hessian allows us tode
ompose the stability problem into two, one with re-spe
t to q, and another with respe
t to r.Following the argument in the appendix of [20℄, one
an say that the system is stable with respe
t to q if thematrix H
 � Hqq �Hqq̂�Hq̂q̂��1Hqq̂ is positive de�nite.This 
ondition takes into a

ount the fa
t that q̂ dependson q. A 
orresponding statement holds for the stabilitywith respe
t to r.The stability with respe
t to r is straightforward, bynoting that the matrix Hr̂r̂ is negative de�nite, whi
hmeans that H
 = �(M=N )2�Hr̂r̂��1 is positive de�nite.We 
onsider the stability with respe
t to q. ForK � 3,we have H
 = [q̂20=C(C � 1)℄I, where I is the identitymatrix, so that the stability immediately follows, irre-spe
tive of the noise level of the 
hannel. For K = 2, thematrix H
 is diagonal, and its A-th element is�H
�AA = � Cq20 �rAr0 �L + q̂20C(C � 1) : (A3)Using the equality whi
h holds under the RS ansatz,rAr0 = Z 1�1 vm�(v) dv; (A4)where A = �1 � � ��m, we have, as the stability 
ondition,Em � Z 1�1 vm�(v) dv < (C � 1)�1=L: (A5)for m = 1; : : : ; n. Sin
e it 
an be shown that E2m�1 =E2m and E2m � E2m+2, the 
riti
al 
ondition determin-ing the stability is E1 < (C � 1)�1=L: (A6)[1℄ C. E. Shannon, Bell Syst. Te
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