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Typial performane of low-density parity-hek odesover general symmetri hannelsToshiyuki Tanaka1,2 and David Saad21Department of Eletronis and Information Engineering, Tokyo Metropolitan University,1-1 Minami-Osawa, Hahioji-shi, Tokyo, 192-0397 Japan2Neural Computing Researh Group, Aston University,Aston Triangle, Birmingham, B4 7ET, United Kingdom(Dated: April 29, 2002)Typial performane of low-density parity-hek (LDPC) odes over a general binary-inputoutput-symmetri memoryless hannel is investigated using methods of statistial mehanis. Theo-retial framework for dealing with general symmetri hannels is provided, based on whih Gallagerand MaKay-Neal odes are studied as examples of LDPC odes. It has been shown that the ba-si properties of these odes known for partiular hannels, inluding the property to potentiallysaturate Shannon's limit, hold for general symmetri hannels. The binary-input additive-white-Gaussian-noise hannel and the binary-input Laplae hannel are onsidered as spei� hannelnoise models.I. INTRODUCTIONWe investigate the typial performane of low-densityparity-hek (LDPC) odes over a general binary-inputoutput-symmetri (BIOS) memoryless hannel. Previousstatistial physis based analyses of LDPC odes havedisovered some interesting properties, inluding the fatthat they an, in priniple, saturate the information-theoreti upper bound (Shannon's bound de�ned bythe hannel oding theorem [1℄) with low onnetivityvalues. Existing statistial mehanial studies on theLDPC odes, however, have been mostly on�ned tothe ase of binary symmetri hannel (BSC), whih �tsinto the statistial-mehanial framework in a naturalway [2, 3, 4, 5℄. Notable exeptions are the work byMontanari [6℄ that disusses the ase of binary-inputadditive-white-Gaussian-noise hannel (BIAWGNC) aswell as the BSC ase and the study of Sourlas odes [7℄,a simple LDPC ode, in whih non-BSC hannels are ad-dressed [8, 9, 10℄. From the statistial-mehanial pointof view, LDPC odes are regarded as random spin sys-tems; it is therefore natural to expet that they will ex-hibit some sort of universality, just as typial statistial-mehanial systems do, so that general properties ofLDPC odes observed in the BSC ase will be preservedwhen di�erent ommuniation hannels are onsidered.In this paper we investigate the properties of LDPCodes in binary-input output-symmetri hannels andshow that this is generally the ase. In partiular, weshow that the �nite onnetivity LDPC odes an satu-rate Shannon's bound for general BIOS hannel.The paper is organized as follows: In setion II weintrodue the general framework, notation, odes and thehannels that we will fous on. In setion III we willbriey desribe the alulation for the various hannels,while the results obtained will be desribed in setion IV,followed by the onlusions.

II. THE GENERAL FRAMEWORKA. Symmetri hannelsWe onsider the general lass of binary-input output-symmetri (BIOS) memoryless hannel. The input of thehannel is binary (�1), and the output may take any realvalue. The harateristis of a hannel is desribed by thehannel transition probabilities, P (yjx = 1) and P (yjx =�1). Let p(y) � P (yjx = 1). A symmetri hannel isharaterized as a hannel whose transition probabilitiessatisfy P (yjx = �1) = P (�yjx = 1) = p(�y). Varioustypes of hannel models of pratial interest fall into thelass of BIOS hannels, inluding the binary symmetrihannel (BSC)pBSC(y) = (1� p)Æ(y � 1) + pÆ(y + 1); (1)the binary-input additive-white-Gaussian-noise hannel(BIAWGNC)pBIAWGNC(y) = 1p2��2 e�(y�1)2=2�2 ; (2)and the binary-input Laplae hannel (BILC)pBILC(y) = 1�e�jy�1j=�; (3)Eah of the parameters p, �2, and � represents the degreeof degradation indued by the hannel noise. We all eahof them the noise level and let d denotes the generi one.An apparent tehnial diÆulty in dealing with a gen-eral hannel of real-valued output is that it is not at allobvious how to de�ne the syndrome from the reeivedsignal: The modulo 2 arithmeti involved in omputingsyndrome in the BSC ase is not diretly appliable tothe ases of real-valued reeived signal. This diÆulty isresolved by using a trunation proedure [11℄: We on-eptually onsider another �titious binary-input binary-output hannel in addition to the hannel under study.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78877789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2Let r be the (�titious) output symbol of this �titioushannel. We an assign to r either of the values �1 arbi-trarily, and the binary hannel noise � for the �titioushannel is de�ned therefrom, via r = x�. For the sakeof making the argument simple, we assign r = 1 withoutloss of generality. Sine the prior probability of � (be-fore reeiving y) should be P (� = �1) = 1=2, the jointdistribution of y and � is given byP (y; �) = p(�y)2 (4)sine the trunation proedure used here yields x = �.B. Gallager odeLDPC odes have been originally introdued by Gal-lager in his seminal work from 1963 [12℄. Gallager's orig-inal onstrution [12℄ is one of the most extensively stud-ied LDPC odes in the information theory literature. Itis de�ned by its parity-hek matrix A = [C1jC2℄ of di-mensionality (M �N )�M , whih is taken to be randomand very sparse. The submatrix C2, of dimensionality(M � N )� (M �N ), is assumed invertible.In the enoding step, the enoder omputes a odewordfrom the information vetor � 2 f0; 1gN by employing agenerator matrix Gx = GT� mod 2; (5)where the generator matrix is de�ned byG = [IjC�12 C1℄ mod 2: (6)This onstrution ensures AGT = 0 mod 2. The infor-mation ode rate for unbiased messages is R = N=M .In regular Gallager odes, the number of non-zero ele-ments per row of A is �xed to be K. We all it the rowonstraint. Average number of non-zero elements per ol-umn is then C � K(M�N )=M , whereas we will onsiderthe ase in whih the number of non-zero elements in eaholumn is fored to be exatly C, whih we term the ol-umn onstraint. Irregular Gallager odes an be de�nedby relaxing these onstraints. It has been known thatmaking ode onstrution irregular may improve perfor-mane signi�antly [13℄, but we will not disuss irregularodes in the urrent paper. We all the resulting regularGallager ode a (C;K)-Gallager ode.C. MN odeWe also disuss a variant of LDPC odes, alled theMN ode [11, 14℄. The generator matrix GT of the MNode is de�ned byGT = C�1n Cs mod 2; (7)

where Cs and Cn are sparse matries of dimensionalityM �N and M �M , respetively; Cn is assumed invert-ible. The information rate for the ode is R = N=M forunbiased message.In regular MN odes the row and olumn onstraintsare imposed on both matries Cs and Cn. The numberof non-zero elements per row of Cs and Cn should be ex-atly K and L, respetively. Also here, we do not disussirregular MN odes [15℄ in this paper. The number ofnon-zero elements per olumn of Cs and Cn are set to Cand L, respetively, where C = KM=N holds. We allthe resulting ode a (K;C;L)-MN ode.III. ANALYSISA. Gallager odeThe basi idea behind the statistial-mehanial treat-ment of the LDPC odes is the equivalene between thedeoding problem and the thermal equilibrium distribu-tion of a dilute Ising spin system. In order to see thisin the Gallager ode ase, one should �rst note that thedeoding problem is to �nd � whih is best supported(i.e., most probable) by the reeived signal y among theset of � satisfying the parity-hek equation (A� = A�mod 2 if we write it in the f0; 1g-notation). The set isexpressed as�� ���� lim!1 exp�� M�NX�=1 �J� Yj2L(�) �j � 1�� = 1�; (8)where L(�) = fjjA�j = 1g (9)denotes the set of indies for whih the parity-hek ma-trix A has 1's in �-th row, andJ� = Yj2L(�) �j (10)is �-th hek. The posterior probability of � ondi-tioned on the reeived signal y then aquires the followingGibbs-Boltzmann form:P(� jy) = 1Z exp���H (� ;y;J)� (11)in whih we have to take the limit  ! 1 and onsiderit at � = 1 (Nishimori's temperature [8, 16, 17, 18℄)in order to obtain the true posterior. The HamiltonianH(� ;y;J) is de�ned asH(� ;y;J) = � M�NX�=1 �J� Yj2L(�) �j � 1�� MXj=1 log p(�jyj); (12)



3The hannel harateristis enters into the Hamiltonianas the term logp(�jyj) whih, by noting that �j takes �1,an be rewritten aslogp(�jyj) = �j 12 log p(yj)p(�yj) + 12 log p(yj)p(�yj): (13)From this expression it immediately follows that it is thelog-likelihood ratio hj � (1=2) log(p(yj)=p(�yj)) of thehannel noise yj whih serves as the external �eld atingon site j, and that the hannel harateristis de�nes the�eld distribution. Analyzing the e�et of having di�erentommuniation hannels on the ode properties, there-fore redues to investigating the e�et of di�erent �elddistributions on the physial properties of the system.The �eld distributions p(h) for various hannel modelsare as follows:� BSC:pBSC(h) = (1� p)Æ�h� 12 log 1� pp �+ pÆ�h+ 12 log 1� pp � (14)� BIAWGNC:pBIAWGNC(h) =r�22�e�(h���2)2=2��2 (15)� BILC:pBILC(h) = 12Æ(h� ��1) + e�2��12 Æ(h+ ��1)+ �[���1 < h < ��1℄ 12eh���1 ; (16)where �[X℄ is the indiator funtion, taking 1 whenX is true and 0 otherwise.Skethes of these �eld distributions are given in Fig. 1.We assume that the free energy of the system is self-averaging, that is,f = � 1� limM!1M�1hlogZiA;y; (17)and evaluate the average h�iA;y over the reeived signal yand the randomness of the parity-hek matrix A usingthe replia method,f = � 1� limM!1 limn!0M�1 ��n loghZniA;y: (18)In alulating the free energy, we perform the gaugetransformation �j ! �j�j , yj ! �jyj . The average over yan be taken with respet toQMj=1 p(yj) after having per-formed the gauge transformation. We have to introduea random tensor to take average over A.
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1/λ-1/λ () BILCFIG. 1: Field distributions orresponding to various BIOShannels.Following basially the same proedure as in [3℄ andexhanging the order of the two limits, taking the limitM !1 �rst, one obtainsf = � 1� limn!0 ��n Extrq;q̂ �CK G1(q)�G2(q; q̂)+G3(q̂)�; (19)whereG1(q) � log nXm=0 Xh�1����mi qK�1����m � n log 2;G2(q; q̂) � nXm=0 Xh�1����mi q�1����m q̂�1����m ;G3(q̂) � log" X�1 ;:::;�n * nY�=1p(��y)+y� 1C!� nXm=0 Xh�1����mi q̂�1����m��1 � � ���m�C#:(20)



4To proeed further we adopt the replia-symmetri(RS) ansatz and letq�1����m = q0 Z um�(u) du; q̂�1����m = q̂0 Z ûm�̂(û) dû:(21)We will use the following simplifying notation.�K(u) du � KYj=1�(uj) duj (22)The replia-symmetri free energy fRS beomesfRS = 1� Extr�;�̂ (CK log 2+ C ZZ log(1 + uû)�(u) �̂(û) du dû� CK Z log�1 + KYj=1uj��K(u) du� Z �log�p(y) CYl=1(1 + ûl) + p(�y) CYl=1(1� ûl)��y� �̂C(û) dû); (23)in whih q0 and q̂0 have been eliminated using the extrem-ization ondition q0q̂0 = C. Heuristi onstrution of asuÆient ondition to the extremization problem with re-spet to � and �̂ is possible, and it gives the followingsaddle-point equations.�(u) = Z �Æ�u� tanh�h(y) + C�1Xl=1 tanh�1 ûl���y� �̂C�1(û) dû�̂(û) = Z Æ�û� K�1Yj=1 uj��K�1(u) du (24)We have let h(y) � 12 log p(y)p(�y) : (25)The performane of the ode is quanti�ed by the overlapm = M�1PMk=1 �jh�ji, whih is given asm = Z sign(z)P (z) dz; (26)whereP (z) = Z �Æ�z � tanh�h(y) + CXl=1 tanh�1 ûl���y� �̂C(û) dû: (27)

B. MN odeThe deoding problem for the MN ode is to �nd S and� whih are the best suitable in view of the reeived signaly among the sets of S and � satisfying the parity-hekequation (CsS + Cn� = Cs� + Cn� mod 2 if written inthe f0; 1g-notation). De�ning the �th omponent of thehek J as J� = Yj2Ls(�) �j Yl2Ln(�) �l; (28)whereLs(�) = fjj(Cs)�j = 1g; Ln(�) = flj(Cn)�l = 1g;(29)the posterior probability of S and � onditioned on thereeived signal y and the hek J is given byP(S; � jy;J) = 1Z exp���H (S; � ;y;J)�; (30)in the limit  !1 and at � = 1, where the HamiltonianH(S; � ;y;J) is de�ned asH(S; � ;y;J) = � MX�=1�J� Yj2Ls(�)Sj Yl2Ln (�) �l � 1�� Fs NXj=1 Sj � MXl=1 log p(�lyl); (31)where Fs is a parameter representing the bias of the in-formation vetor � in suh a way that P (�j = �1) =(1�tanhFs)=2 holds. The form of Eq. (31) learly showsthat the hannel harateristis again ats as random�eld on f�lg, where the log likelihood ratio gives the a-tual value of the �eld.The replia alulation an be done along the same wayas in the ase of the Gallager ode. We have performedthe gauge transformation Sj ! �jSj , �j ! �j�j, andyj ! �j�j . The free energy f beomesf = � 1� limn!0 ��n Extrq;q̂;r;r̂�CK G1(q; r)� G2(q; q̂; r; r̂) + G3(q̂; r̂)�;(32)where G1(q; r) � log nXm=0 Xh�1����mi qK�1����mrL�1����m� n log 2;G2(q; q̂; r; r̂) � nXm=0 Xh�1����mi q�1����m q̂�1����m+ MN nXm=0 Xh�1����mi r�1����m r̂�1����m ;(33)



5andG3(q̂; r̂) � log" XS1;:::;SnDeFsPn�=1 �S�E�� 1C!� nXm=0 Xh�1����m îq�1����mS�1 � � �S�m�C#+ MN log" X�1 ;:::;�n� nY�=1p(��y)�y� 1L!� nXm=0 Xh�1����m îr�1����m��1 � � ���m�L#:(34)We adopt the RS ansatz as before, under whih wehaver�1����m = r0 Z vm�(v) dv; r̂�1����m = r̂0 Z v̂m�̂(v̂) dv̂;(35)in addition to Eq. (21). The replia-symmetri free en-ergy fRS beomesfRS = 1� Extr�;�̂;�;�̂(CK log 2+ C ZZ log(1 + uû)�(u) �̂(û) du dû+ CLK ZZ log(1 + vv̂) �(v) �̂(v̂) dv dv̂� CK ZZ log�1 + KYk=1uk LYl=1 vl�� �K(u) du �L(v) dv� Z �log� XS=�1 eFs�S CYk=1(1 + Sûk)����̂C(û) dû� CK Z �log� X�=�1 p(�y) LYl=1(1 + � v̂l)��y� �̂L(v̂) dv̂); (36)in whih q0, q̂0, r0, and r̂0 have been eliminated usingthe extremization onditions, q0q̂0 = C and r0r̂0 = L.Constrution of a heuristi solution to the extremiza-tion problem an be done in the same manner, whih

yields the following saddle-point equations:�(u) = Z �Æ�u� tanh�Fs� + C�1Xl=1 tanh�1 ûl����� �̂C�1(û) du�̂(û) = ZZ Æ�û� K�1Yk=1 uk LYl=1 vl��K�1(u) du �L(v) dv�(v) = Z �Æ�v � tanh�h(y) + L�1Xl=1 tanh�1 v̂l���y� �̂L�1(v̂) dv̂�̂(v̂) = ZZ Æ�v̂ � KYk=1uk L�1Yl=1 vl��K(u) du �L�1(v) dv(37)The overlap is then evaluated bym = Z sign(z)P (z) dz; (38)whereP (z) = Z �Æ�z � tanh�Fs� + CXl=1 tanh�1 ûl����� �̂C(û) dû: (39)It is worthwhile mentioning that, when the messageis unbiased (Fs = 0) and K is even, saddle-pointsolutions have the following symmetry: For eah so-lution f�(u); �̂(û); �(v); �̂(v̂)g there is another solutionf�(�u); �̂(�û); �(v); �̂(v̂)g. The latter has the same over-lap as that of the former with the opposite sign.IV. RESULTSA. Gallager ode1. Analytial solutionsOf partiular interest is the ferromagneti state, whihorresponds to an error-free ommuniation. One an seethat the assertion�(u) = Æ(u� 1); �̂(û) = Æ(û� 1) (40)always satis�es the saddle-point equation (24) irrespe-tive of the values of K and C (provided that K;C � 2),thereby providing a solution. The overlap and the freeenergy of the solution at � = 1 are mferro = 1 andfferro = �hlog p(y)iy , respetively. One an thereforeidentify this as the ferromagneti solution.Another solution, whih an be found in the limitK !1, is the sub-optimal ferromagneti solution�(u) = 
Æ�u� tanhh(y)��y ; �̂(û) = Æ(û); (41)



6for whih msf = 
sign�p(y) � p(�y)��y (42)and fsf = CK log 2� 
log�p(y) + p(�y)��y: (43)The di�erene of the free energy is expressed asfsf � fferro = C�R log 2; (44)where C is the hannel apaity of the BIOS hannel de-�ned asC = log2� 
log�p(y) + p(�y)��y + 
logp(y)�y: (45)This proves that the thermodynami transition betweenthe ferromagneti and sub-optimal ferromagneti solu-tions (no other solution has been identi�ed in this ase)ours at the theoretial limit. This means that the max-imum rate Rmax, up to whih error-free ommuniationis theoretially possible, asymptotially ahieves the the-oretial limit as K ! 1. This result has been knownfor BSC hannel [4, 5℄ in the physis literature and is inagreement with results reported in the information the-ory literature [11℄. The urrent result is an extension tothe ase of a general BIOS hannel.2. Numerial solutions of saddle-point equationsIn �nite-K ases no simple analytial solution existsother than the ferromagneti one, so one has to solvethe saddle-point equations numerially. We have done itfor BIAWGNC and BILC. The dependene of the over-lap m on the noise level d (�2 for BIAWGNC, and �for BILC) is qualitatively the same as that observed inBSC: For K � 3 the ferromagneti solution is loallystable over the whole range of noise levels. At d = ds,another solution with m < 1 appears, whih de�nes thespinodal point. At a higher noise level d = dt > dsthermodynami transition takes plae, beyond whih theferromagneti solution with m = 1 beomes metastable(see Fig. 2). Table I summarizes the results for the BI-AWGNC ase, showing the spinodal point �2s (the valueof the variane at whih new, non ferromagneti, solu-tions emerge), the thermodynami transition point �2t(at whih the thermodynami transition ours), and �20,the information-theoreti upper bound of the varianeallowing error-free ommuniation.Table II summarizes the results for the BILC ase,showing the values of the spinodal point �s, the ther-modynami transition point �t, and the information-theoreti upper bound �0.It should be noted that the results for the spinodalpoint agree well with the results obtained by the densityevolution approah [19℄, as expeted, sine the saddle-point equations by the replia analysis happen to oinidewith the time evolution equations in the density evolu-tion.

0

1
m

dds dtFIG. 2: Noise-overlap diagram for Gallager ode. Thik solidlines stand for the stable state, thin solid lines for metastablestate, and broken lines for unstable states. The ferromagnetisolution is haraterized by the m = 1 solution, while m < 1de�nes the suboptimal ferromagneti solution.TABLE I: The varianes �2s and �2t at the spinodal point andthermodynami transition, respetively, for the BIAWGNCfor various ode parameters; �20 , denoting the information-theoretial upper bound for error-free ommuniation, is alsoshown.C K R �2s �2t �203 6 0:5 0:775 0:899 0:9584 8 0:5 0:701 0:943 0:9585 10 0:5 0:629 0:952 0:9583 5 0:4 1:017 1:253 1:3214 6 0:333 1:020 1:666 1:6813 4 0:25 1:598 2:325 2:401B. MN ode1. Analytial solutionsIn the following we restrit our disussion of the MNode to the unbiased ase Fs = 0. The ferromagnetiTABLE II: The parameter values �s and �t at the spin-odal point and thermodynami transition, respetively, forthe BILC with various ode parameters; �0, denoting theinformation-theoretial upper bound for error-free ommuni-ation, is also shown.C K R �s �t �03 6 0:5 0:651 0:712 0:7524 8 0:5 0:618 0:741 0:7525 10 0:5 0:581 0:746 0:7523 5 0:4 0:773 0:875 0:9144 6 0:333 0:782 1:045 1:0553 4 0:25 1:018 1:260 1:298



7solution, orresponding to the error-free ommuniation,an be onstruted for the MN ode with L � 2. (Infat, in the ase L = 1 the matrix Cn redues to a simplepermutation matrix, so that we have to estimate eahelement of noise separately. This ase is not at all inter-esting and therefore we will not disuss it any more.) Itis given by �(u) = Æ(u� 1); �̂(û) = Æ(û� 1);�(v) = Æ(v � 1); �̂(v̂) = Æ(v̂ � 1); (46)for whih mferro = 1 andfferro = �CK 
logp(y)�y: (47)The MN ode has the following paramagneti solutionfor K � 2:�(u) = Æ(u); �̂(û) = Æ(û);�(v) = 
Æ�v � tanhh(y)��y ; �̂(v̂) = Æ(v̂); (48)whih yields mpara = 0 andfpara = �CK � 1� log 2� CK 
log�p(y) + p(�y)��y: (49)Again, sine fpara � fferro = CK (C� R log 2) (50)holds, we onlude that for the MN ode the maximumrate Rmax, theoretially allowing error-free ommunia-tion, ahieves the theoretial limit as long as K � 2,L � 2, provided that there is no loally stable solu-tion other than the ferromagneti and paramagneti so-lutions. This result is an extension of the result reportedin [2, 3℄ to the ase of a general BIOS hannel.It should be noted that the paramagneti solution (46)is also valid in the limit L!1 for the ase K = 1. Thismeans that the above-mentioned result also holds for thease of K = 1 asymptotially in the limit L!1.2. Numerial solutions of saddle-point equationsIn order to explore solutions other than the ferromag-neti and paramagneti solutions, we have to solve thesaddle-point equations numerially. We have done it forthe BIAWGNC and BILC ases. We observed qualita-tively the same harateristis as those reported in [3℄.The obtained numerial results suggest that the quali-tative physial properties are ategorized into three typesaording to the K value: ases with K = 1, K = 2 andK � 3, whereas it is only a�eted quantitatively by thevalues of C and L, as desribed in the following.The struture of noise-overlap diagram for the MNode with K = 1 is qualitatively the same as that forGallager ode (see Fig. 2): At very low noise level only

TABLE III: The varianes �2s, �2t , and �2b at the spinodalpoint and thermodynami transition, and at bifuration ofparamagneti solution, respetively, for (K;C;L)-MN odesover the BIAWGNC and various ode parameters; �20, de-noting the information-theoretial upper bound for error-freeommuniation, is also shown.K C L R �2s �2t �2b �201 2 3 0:5 0:775 0:901 � 0:9581 2 4 0:5 0:703 0:944 � 0:9581 2 5 0:5 0:630 0:955 � 0:9581 3 2 0:333 1:338 1:423 � 1:6811 3 3 0:333 1:129 1:659 � 1:6811 3 4 0:333 0:913 1:672 � 1:6812 3 2 0:667 0:536 0:587 0:612 0:5882 3 3 0:667 0:430 0:588 0:459 0:5882 3 4 0:667 0:368 0:588 0:385 0:5882 4 2 0:5 0:809 0:958 0:919 0:9582 5 2 0:4 1:039 1:321 1:175 1:321TABLE IV: The parameter values �s, �t, and �b at the spin-odal point and thermodynami transition, and at bifura-tion of paramagneti solution, respetively, for (K;C;L)-MNodes over the BILC and various ode parameters; �0, de-noting the information-theoretial upper bound for error-freeommuniation, is also shown.K C L R �s �t �b �01 2 3 0:5 0:652 0:714 � 0:7521 2 4 0:5 0:619 0:740 � 0:7521 2 5 0:5 0:582 0:748 � 0:7521 3 2 0:333 0:903 0:934 � 1:0551 3 3 0:333 0:831 1:040 � 1:0551 3 4 0:333 0:735 1:051 � 1:0552 3 2 0:667 0:525 0:551 0:597 0:5532 3 3 0:667 0:464 0:553 0:493 0:5532 3 4 0:667 0:419 0:553 0:437 0:5532 4 2 0:5 0:689 0:751 0:771 0:7522 5 2 0:4 0:807 0:914 0:894 0:914the ferromagneti solution with m = 1 exists. At aertain noise level d = ds another metastable solutionwith m < 1 appears, and it beomes dominant beyondd = dt > ds. Sine the latter solution is obtained only nu-merially, there is no guarantee that the thermodynam-ial transition dt is equal to the information-theoretiallimit d0. Numerial results show that in general dt issmaller than d0: However, it is also observed that, for�xed C, inreasing L makes ds smaller and dt larger, thelatter of whih approahes the information-theoretiallimit d0 as L!1, as disussed at the end of the previ-ous subsetion. Even for �nite L the value of dt may benumerially very lose to d0, espeially when the rate Ris small. These properties have already been reported forthe BSC ase [3℄, so that our �nding implies that theyalso hold for the BIAWGNC and BILC ases, revealingsome sort of universality.The noise-overlap diagram for the ases with K = 2
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dds dt db(b)FIG. 3: Noise-overlap diagram for the ases with K = 2.has the general struture shown in Fig. 3. The diagramis haraterized by three transition points: the spinodalpoint ds, the thermodynami transition dt, and the bifur-ation point db. The order of the thermodynami transi-tion dt and the bifuration point db varies with the valuesof C and L, so that the bifuration pattern for the aseswith K = 2 is further divided into two sub-ategories de-pending on the order of the two transitions: ds < db < dtfor the �rst group, and ds < dt < db for the seondgroup. The noise-overlap diagrams for these groups areillustrated in Fig. 3 (a) and (b), respetively. By the loalstability analysis the bifuration point db is determinedby Z v�(v) dv = (C � 1)�1=L; (51)whih allows us to deide the type of bifuration of a par-tiular ase. See the appendix for derivation of Eq. (51).As a result, we found that only a few ases with smallvalues of C and L fall into the seond ategory. Thevalues of C and L for whih the (2; C; L)-MN ode fallinto the seond ategory depend on the hannel har-ateristis; as far as we have observed, only the ases
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ddtFIG. 4: Noise-overlap diagram for the ases with K � 3.with L = 2 fall into the seond group. For the BI-AWGNC ase, the (2; 3; 2)-MN ode is the only one in-stane, whereas for the BILC ase, both (2; 3; 2)- and(2; 4; 2)-MN odes belong to this group. (For the BSCase, (2; 3; 2)-, (2; 4; 2)-, and (2; 5; 2)-MN odes belong tothis group.) All the (2; C; L)-MN odes but those men-tioned above are in the �rst group. For the ases in theseond group, the thermodynami transition dt must beless than the information-theoreti limit d0: However, itturns out numerially that dt is very lose to d0.We observed that the noise-overlap diagram for theases with K � 3 is relatively simple for the BIAWGNCand BILC ases, just as in the BSC ase (Fig. 4): Theferromagneti solution with m = 1 (and its mirror im-age with m = �1 when K is even) and the paramag-neti solution are the only stable solutions found, bothof whih are loally stable over the whole range of thenoise level. The system exhibits a �rst-order transitionat the information-theoreti limit dt. We did not �nd anysolutions other than the ferromagneti and paramagnetisolutions. V. CONCLUSIONSWe have analyzed typial performane of LDPC odesover BIOS hannel using statistial mehanis. We haveshown for the ase of LDPC odes that the log-likelihoodratio of the reeived signal serves as an external random�eld ating on eah site, and that hannel harateristisde�ne the distribution of the random �eld. The Gallagerand MN odes are analyzed, to �nd that the basi proper-ties of these odes remain unhanged regardless of han-nel harateristis. In partiular, it has been shown thatthese odes potentially saturate Shannon's limit asymp-totially, as K ! 1, for the Gallager ode; and whenK;L � 2 | with a few exeptions with small C andL values | and asymptotially as L ! 1 for K = 1,for the MN ode. Saddle-point solutions have also been



9numerially evaluated extensively for the ases of BI-AWGNC and BILC hannels, from whih noise-overlapdiagrams, as well as the transition and bifuration points,have been haraterized.AknowledgmentsWe would like to thank Yoshiyuki Kabashima for hishelpful suggestions, Jort van Mourik for providing om-puter programs, and Nikos Skantzos for helpful disus-sions. Support from EPSRC researh grant GR/N00562is aknowledged.* APPENDIX A: STABILITY OFPARAMAGNETIC SOLUTION FOR K � 2To probe the stability of paramagneti solution, whihexists for K � 2, we analyze the stability with respet toq and r only, and do not onsider stability with respet toq̂ and r̂; these onjugate variables are subsidiary to theirounterparts, q and r, respetively, so that the formershould not be onsidered as independent variables.Let A, B, : : : denote sets of replia indies suh ash�1 � � ��mi, m � 1. We �rst evaluate the Hessian of thefree energy (32) with respet to 4 � (2n � 1) variablesfqA; q̂A; rA; r̂Ag:H = 0B� Hqq Hqq̂Hqq̂ Hq̂q̂ OO O Hrr̂Hrr̂ Hr̂r̂ 1CA ; (A1)where�Hqq�AB = 8<: 0 (K � 3)�Cq20 �rAr0 �L ÆAB (K = 2)�Hqq̂�AB = ÆAB�Hq̂q̂�AB = �C(C � 1)q̂20 ÆAB�Hrr̂�AB = MN ÆAB�Hr̂r̂�AB = �MN L(L � 1)r̂20 ÆAB (A2)

The blok-diagonal struture of the Hessian allows us todeompose the stability problem into two, one with re-spet to q, and another with respet to r.Following the argument in the appendix of [20℄, onean say that the system is stable with respet to q if thematrix H � Hqq �Hqq̂�Hq̂q̂��1Hqq̂ is positive de�nite.This ondition takes into aount the fat that q̂ dependson q. A orresponding statement holds for the stabilitywith respet to r.The stability with respet to r is straightforward, bynoting that the matrix Hr̂r̂ is negative de�nite, whihmeans that H = �(M=N )2�Hr̂r̂��1 is positive de�nite.We onsider the stability with respet to q. ForK � 3,we have H = [q̂20=C(C � 1)℄I, where I is the identitymatrix, so that the stability immediately follows, irre-spetive of the noise level of the hannel. For K = 2, thematrix H is diagonal, and its A-th element is�H�AA = � Cq20 �rAr0 �L + q̂20C(C � 1) : (A3)Using the equality whih holds under the RS ansatz,rAr0 = Z 1�1 vm�(v) dv; (A4)where A = �1 � � ��m, we have, as the stability ondition,Em � Z 1�1 vm�(v) dv < (C � 1)�1=L: (A5)for m = 1; : : : ; n. Sine it an be shown that E2m�1 =E2m and E2m � E2m+2, the ritial ondition determin-ing the stability is E1 < (C � 1)�1=L: (A6)[1℄ C. E. Shannon, Bell Syst. Teh. J. 27, 379 (1948); 27,623 (1948).[2℄ Y. Kabashima, T. Murayama, and D. Saad, Phys. Rev.Lett. 84, 1355 (2000).[3℄ T. Murayama, Y. Kabashima, D. Saad, and R. Viente,Phys. Rev. E 62, 1577 (2000).[4℄ R. Viente, D. Saad and Y. Kabashima, Europhys. Lett. 51 698 (2000).[5℄ J. van Mourik, D. Saad, and Y. Kabashima (unpub-lished).[6℄ A. Montanari, Eur. Phys. J. B, 23 121 (2001).[7℄ N. Sourlas, Nature (London) 339, 693 (1989).[8℄ P. Ruj�an, Phys. Rev. Lett. 70, 2968 (1993).[9℄ H. Nishimori and K. Y. Mihael Wong, Phys. Rev. E 60,
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