1,485 research outputs found

    NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley

    Get PDF
    Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores

    IL-33 expression in response to SARS-CoV-2 correlates with seropositivity in COVID-19 convalescent individuals

    Get PDF
    Our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We perform an observational study to investigate seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5-79 years). Seropositivity for SARS-CoV-2 Spike glycoprotein aligns with PCR results that confirm the previous infection. Anti-Spike IgG/IgM titers remain high 60 days post-infection and do not strongly associate with symptoms, except for fever. We analyze PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist-activation reveals an increased population of IL-6+TNF-IL-1β+ monocytes, while SARS-CoV-2 peptide stimulation elicits IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlates with CD4+ T cell activation in PBMCs from convalescent subjects and is likely due to T cell-mediated effects on IL-33-producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 reveals a population of IL-33-producing cells that increases with the disease. Together these findings show that IL-33 production is linked to SARS-CoV-2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity

    Differential drought-induced modulation of ozone tolerance in winter wheat species

    Get PDF
    Recent reports challenge the widely accepted idea that drought may offer protection against ozone (O3) damage in plants. However, little is known about the impact of drought on the magnitude of O3 tolerance in winter wheat species. Two winter wheat species with contrasting sensitivity to O3 (O3 tolerant, primitive wheat, T. turgidum ssp. durum; O3 sensitive, modern wheat, T. aestivum L. cv. Xiaoyan 22) were exposed to O3 (83ppb O3, 7h d−1) and/or drought (42% soil water capacity) from flowering to grain maturity to assess drought-induced modulation of O3 tolerance. Plant responses to stress treatments were assessed by determining in vivo biochemical parameters, gas exchange, chlorophyll a fluorescence, and grain yield. The primitive wheat demonstrated higher O3 tolerance than the modern species, with the latter exhibiting higher drought tolerance than the former. This suggested that there was no cross-tolerance of the two stresses when applied separately in these species/cultivars of winter wheat. The primitive wheat lost O3 tolerance, while the modern species showed improved tolerance to O3 under combined drought and O3 exposure. This indicated the existence of differential behaviour of the two wheat species between a single stress and the combination of the two stresses. The observed O3 tolerance in the two wheat species was related to their magnitude of drought tolerance under a combination of drought and O3 exposure. The results clearly demonstrate that O3 tolerance of a drought-sensitive winter wheat species can be completely lost under combined drought and O3 exposure

    Heat-Shock Protein 90 Controls the Expression of Cell-Cycle Genes by Stabilizing Metazoan-Specific Host-Cell Factor HCFC1

    No full text
    Molecular chaperones such as heat-shock proteins (HSPs) help in protein folding. Their function in the cytosol has been well studied. Notably, chaperones are also present in the nucleus, a compartment where proteins enter after completing de novo folding in the cytosol, and this raises an important question about chaperone function in the nucleus. We performed a systematic analysis of the nuclear pool of heat-shock protein 90. Three orthogonal and independent analyses led us to the core functional interactome of HSP90. Computational and biochemical analyses identify host cell factor C1 (HCFC1) as a transcriptional regulator that depends on HSP90 for its stability. HSP90 was required to maintain the expression of HCFC1-targeted cell-cycle genes. The regulatory nexus between HSP90 and the HCFC1 module identified in this study sheds light on the relevance of chaperones in the transcription of cell-cycle genes. Our study also suggests a therapeutic avenue of combining chaperone and transcription inhibitors for cancer treatment

    Sulfur sequestration promotes multicellularity during nutrient limitation

    Get PDF
    The behaviour of Dictyostelium discoideum depends on nutrients. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes

    Two Modes of Transcriptional Activation at Native Promoters by NF-κB p65

    Get PDF
    The NF-κB family of transcription factors is crucial for the expression of multiple genes involved in cell survival, proliferation, differentiation, and inflammation. The molecular basis by which NF-κB activates endogenous promoters is largely unknown, but it seems likely that it should include the means to tailor transcriptional output to match the wide functional range of its target genes. To dissect NF-κB–driven transcription at native promoters, we disrupted the interaction between NF-κB p65 and the Mediator complex. We found that expression of many endogenous NF-κB target genes depends on direct contact between p65 and Mediator, and that this occurs through the Trap-80 subunit and the TA1 and TA2 regions of p65. Unexpectedly, however, a subset of p65-dependent genes are transcribed normally even when the interaction of p65 with Mediator is abolished. Moreover, a mutant form of p65 lacking all transcription activation domains previously identified in vitro can still activate such promoters in vivo. We found that without p65, native NF-κB target promoters cannot be bound by secondary transcription factors. Artificial recruitment of a secondary transcription factor was able to restore transcription of an otherwise NF-κB–dependent target gene in the absence of p65, showing that the control of promoter occupancy constitutes a second, independent mode of transcriptional activation by p65. This mode enables a subset of promoters to utilize a wide choice of transcription factors, with the potential to regulate their expression accordingly, whilst remaining dependent for their activation on NF-κB

    Dramatic Rise in Plasma Viremia after CD8+ T Cell Depletion in Simian Immunodeficiency Virus–infected Macaques

    Get PDF
    To determine the role of CD8+ T cells in controlling simian immunodeficiency virus (SIV) replication in vivo, we examined the effect of depleting this cell population using an anti-CD8 monoclonal antibody, OKT8F. There was on average a 99.9% reduction of CD8 cells in peripheral blood in six infected Macaca mulatta treated with OKT8F. The apparent CD8 depletion started 1 h after antibody administration, and low CD8 levels were maintained until day 8. An increase in plasma viremia of one to three orders of magnitude was observed in five of the six macaques. The injection of a control antibody to an infected macaque did not induce a sustained viral load increase, nor did it significantly reduce the number of CD8+ T cells. These results demonstrate that CD8 cells play a crucial role in suppressing SIV replication in vivo

    Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species

    Get PDF
    The phytohormone abscisic acid (ABA) and reactive oxygen species (ROS) play critical roles in mediating abiotic stress responses in plants. It is well known that ABA is involved in the modulation of ROS levels by regulating ROS-producing and ROS-scavenging genes, but the molecular mechanisms underlying this regulation are poorly understood. Here we show that the expression of maize ABP9 gene, which encodes a bZIP transcription factor capable of binding to the ABRE2 motif in the maize Cat1 promoter, is induced by ABA, H2O2, drought and salt. Constitutive expression of ABP9 in transgenic Arabidopsis leads to remarkably enhanced tolerance to multiple stresses including drought, high salt, freezing temperature and oxidative stresses. ABP9 expressing Arabidopsis plants also exhibit increased sensitivity to exogenously applied ABA during seed germination, root growth and stomatal closure and improved water-conserving capacity. Moreover, constitutive expression of ABP9 causes reduced cellular levels of ROS, alleviated oxidative damage and reduced cell death, accompanied by elevated expression of many stress/ABA responsive genes including those for scavenging and regulating ROS. Taken together, these results suggest that ABP9 may play a pivotal role in plant tolerance to abiotic stresses by fine tuning ABA signaling and control of ROS accumulation

    Phylogenetic Study of Plant Q-type C2H2 Zinc Finger Proteins and Expression Analysis of Poplar Genes in Response to Osmotic, Cold and Mechanical Stresses

    Get PDF
    Plant Q-type C2H2 zinc finger transcription factors play an important role in plant tolerance to various environmental stresses such as drought, cold, osmotic stress, wounding and mechanical loading. To carry out an improved analysis of the specific role of each member of this subfamily in response to mechanical loading in poplar, we identified 16 two-fingered Q-type C2H2-predicted proteins from the poplar Phytozome database and compared their phylogenetic relationships with 152 two-fingered Q-type C2H2 protein sequences belonging to more than 50 species isolated from the NR protein database of NCBI. Phylogenetic analyses of these Q-type C2H2 proteins sequences classified them into two groups G1 and G2, and conserved motif distributions of interest were established. These two groups differed essentially in their signatures at the C-terminus of their two QALGGH DNA-binding domains. Two additional conserved motifs, MALEAL and LVDCHY, were found only in sequences from Group G1 or from Group G2, respectively. Functional significance of these phylogenetic divergences was assessed by studying transcript accumulation of six poplar C2H2 Q-type genes in responses to abiotic stresses; but no group specificity was found in any organ. Further expression analyses focused on PtaZFP1 and PtaZFP2, the two genes strongly induced by mechanical loading in poplars. The results revealed that these two genes were regulated by several signalling molecules including hydrogen peroxide and the phytohormone jasmonate
    corecore