94 research outputs found

    The Transverse Momentum Dependence of Anomalous J/ψJ/\psi Suppression

    Full text link
    In proton-nucleus and nucleus-nucleus collisions up to central S−US-U interactions, the PTP_T-dependence of J/ψJ/\psi production is determined by initial state parton scattering and pre-resonance nuclear absorption (``normal" J/ψJ/\psi suppression). The ``anomalous" J/ψJ/\psi suppression in Pb−PbPb-Pb collisions must reduce the normal PTP_T broadening, since it occurs mainly in the central part of the interaction region, where also initial state parton scattering and nuclear absorption are strongest. We thus expect for in Pb−PbPb-Pb collisions a turn-over and decrease with increasing ETE_T.Comment: 6 pages tex-file, 1 PS-Table, 3 PS-Figure

    Promoting the use of Motor Function Measure (MFM) as outcome measure in patients with Duchenne Muscular Dystrophy (DMD) treated by corticosteroids

    Get PDF
    ObjectivesAssessing muscle function is a key step in measuring changes and evaluating the outcomes of therapeutic interventions in Duchenne Muscular Dystrophy (DMD). Regarding the large use of corticosteroids (CS) in this population to delay the loss of function, our goal was to monitor the evolution of motor function in patients with DMD treated by corticosteroids (CS) and to study the responsiveness of Motor Function Measure (MFM) in this population in order to provide an estimation of the number of subject needed for a clinical trial.MethodA total of 76 patients with DMD, aged 5.9 to 11.8 years, with at least 6 months of follow-up and 2 MFM were enrolled, 30 in the CS treated group (8±1.62 y) and 46 in the untreated group (7.91±1.50 y).ResultsThe relationship between MFM scores and age was studied in CS treated patients and untreated patients. The evolution of these scores was compared between groups, on a 6-, 12- and 24-month period by calculating slopes of change and standardized response mean. At 6, 12 and 24 months, significant differences in the mean score change were found, for all MFM scores, between CS treated patients and untreated patients. For D1 subscore specifically, at 6 months, the increase is significant in the treated group (11.3±14%/y; SRM 0.8) while a decrease is observed in the untreated group (–17.8±17.7%/y; SRM 1). At 12 and 24 months, D1 subscore stabilized for treated patients but declined significantly for untreated boys (–15.5±15.1%/y; SRM 1 at 12 mo and–18.8±7.1%/y; SRM 2.6 at 24 mo). 21 patients lost the ability to walk during the study: 6 in the CS treated group (25% at 24 months, mean age: 10.74±1.28 y) and 15 in the untreated group (64.71% at 24 months, mean age: 9.20±1.78 y).Discussion and conclusionPatients with DMD treated by CS present a different course of the disease described in this paper using the MFM. Based on these results, an estimation of the number of patients needed for clinical trial could be done

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Charmonia production in 450 GeV/c proton-induced reactions

    Get PDF
    Absolute \jpsi\ and \psip\ production cross sections have been measured at the CERN SPS, with 450~GeV/cc protons incident on a set of C, Al, Cu and W targets. Complementing these values with the results obtained by experiment NA51, which used the same beam and detector with H and D targets, we establish a coherent picture of charmonia production in proton-induced reactions at SPS energies. In particular, we show that the scaling of the \jpsi\ cross section with the mass number of the target, A, is well described as Aα^\alpha with αψ=0.919±0.015\alpha^\psi=0.919\pm0.015. The ratio between the \jpsi\ and \psip\ yields, in our kinematical window, is found to be independent of A, with αψâ€Č−αψ=0.014±0.011\alpha^{\psi^\prime}-\alpha^{\psi}=0.014\pm0.0 11

    AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

    Get PDF
    The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders

    AWAKE: A proton-driven plasma wakefield acceleration experiment at CERN

    Get PDF
    The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter micro bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders.info:eu-repo/semantics/publishedVersio
    • 

    corecore