186 research outputs found
New inclination changing eclipsing binaries in the Magellanic Clouds
Context: Multiple stellar systems are unique laboratories for astrophysics.
Analysis of their orbital dynamics may reveal invaluable information about the
physical properties of the participating stars. Unfortunately, there are only a
few known and well described multiple systems, this is even more so for systems
located outside the Milky Way galaxy. A particularly interesting situation
occurs when the inner binary in a compact triple system is eclipsing. This is
because the stellar interaction, typically resulting in precession of orbital
planes, may be observable as a variation of depth of the eclipses on a long
timescale. Aims: We aim to present a novel method to determine compact triples
using publicly available photometric data from large surveys. Here we apply it
to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database.
Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the
goal to identify those for which the orbital inclination varies in time.
Archival LCs of the selected systems, when complemented by our own observations
with Danish 1.54m telescope, were thoroughly analyzed using the PHOEBE program.
Time dependence of the EB's inclination was described using the theory of
orbital-plane precession. By observing the parameter-dependence of the
precession rate, we were able to constrain the third companion mass and its
orbital period around EB. Results: We identified 58 candidates of new compact
triples in Magellanic Clouds. This is the largest published sample of such
systems so far. Eight of them were analyzed thoroughly and physical parameters
of inner binary were determined together with an estimation of basic
characteristics of the third star. These data may provide important clues about
stellar formation mechanisms for objects with different metalicity than found
in our galactic neighborhood.Comment: Accepted for publication in Astronomy and Astrophysic
Coarse-grained holography:Chaos, thermalization, and gravity
Black holes, at the classical level, are relatively simple systems characterized only by three parameters: mass, electric charge, and angular momentum. Yet, at the quantum level, they are among the most erratic systems in nature due to their ability to rapidly scramble and thermalize information. In this dissertation, we aim to understand the chaotic nature of black holes using the AdS/CFT correspondence. AdS/CFT states that gravity in Anti-de Sitter (AdS) spacetimes is described by a lower-dimensional theory without gravity known as a Conformal Field Theory (CFT). We explore how chaos and thermalization integrate into CFTs despite their rigorous constraints and consistency conditions. We also clarify and give evidence in support of a statistical description of AdS/CFT, which involves an effective –meaning incomplete, or semiclassical– theory of gravity in the bulk and a ‘coarse-grained’ CFT at the boundary. We propose that semiclassical gravity is maximally agnostic about the underlying microscopic structure of the CFT. This proposal leads to a framework that quantitatively describes the statistical nature of quantum gravity. The ideas presented in this dissertation not only deepen our knowledge of chaos and its manifestations in different physical systems, but also enhance our understanding of black holes and their role in quantum gravity
Coarse-grained holography:Chaos, thermalization, and gravity
Black holes, at the classical level, are relatively simple systems characterized only by three parameters: mass, electric charge, and angular momentum. Yet, at the quantum level, they are among the most erratic systems in nature due to their ability to rapidly scramble and thermalize information. In this dissertation, we aim to understand the chaotic nature of black holes using the AdS/CFT correspondence. AdS/CFT states that gravity in Anti-de Sitter (AdS) spacetimes is described by a lower-dimensional theory without gravity known as a Conformal Field Theory (CFT). We explore how chaos and thermalization integrate into CFTs despite their rigorous constraints and consistency conditions. We also clarify and give evidence in support of a statistical description of AdS/CFT, which involves an effective –meaning incomplete, or semiclassical– theory of gravity in the bulk and a ‘coarse-grained’ CFT at the boundary. We propose that semiclassical gravity is maximally agnostic about the underlying microscopic structure of the CFT. This proposal leads to a framework that quantitatively describes the statistical nature of quantum gravity. The ideas presented in this dissertation not only deepen our knowledge of chaos and its manifestations in different physical systems, but also enhance our understanding of black holes and their role in quantum gravity
Surprising variations in the rotation of the chemically peculiar stars CU Virginis and V901 Orionis
CU Vir and V901 Ori belong among these few magnetic chemically peculiar stars
whose rotation periods vary on timescales of decades. We aim to study the
stability of the periods in CU Vir and V901 Ori using all accessible
observational data containing phase information. We collected all available
relevant archived observations supplemented with our new measurements of these
stars and analysed the period variations of the stars using a novel method that
allows for the combination of data of diverse sorts. We found that the shapes
of their phase curves were constant, while the periods were changing. Both
stars exhibit alternating intervals of rotational braking and acceleration. The
rotation period of CU Vir was gradually shortening until the year 1968, when it
reached its local minimum of 0.52067198 d. The period then started increasing,
reaching its local maximum of 0.5207163 d in the year 2005. Since that time the
rotation has begun to accelerate again. We also found much smaller period
changes in CU Vir on a timescale of several years. The rotation period of V901
Ori was increasing for the past quarter-century, reaching a maximum of 1.538771
d in the year 2003, when the rotation period began to decrease. A theoretically
unexpected alternating variability of rotation periods in these stars would
remove the spin-down time paradox and brings a new insight into structure and
evolution of magnetic upper-main-sequence stars.Comment: 5 pages, 3 figure
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV
The PHENIX experiment presents results from the RHIC 2006 run with polarized
proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at
mid-rapidity. Unpolarized cross section results are measured for transverse
momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum
chromodynamics calculations are compared with the data, and while the
calculations are consistent with the measurements, next-to-leading logarithmic
corrections improve the agreement. Double helicity asymmetries A_LL are
presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the
gluon (x_g) with better statistical precision than our previous measurements at
sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in
the proton for 0.06 < x_g < 0.4.Comment: 387 authors from 63 institutions, 10 pages, 6 figures, 1 table.
Submitted to Physical Review D. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV
Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at
midrapidity. A wide p_T range is covered by measurements of nearly-real virtual
photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield
of the direct photons in d+Au collisions over the scaled p+p cross section is
consistent with unity. Theoretical calculations assuming standard cold nuclear
matter effects describe the data well for the entire p_T range. This indicates
that the large enhancement of direct photons observed in Au+Au collisions for
1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear
effects.Comment: 547 authors, 7 pages, 4 figures. Submitted to Phys. Rev. Lett.. Plain
text data tables for the points plotted in figures for this and previous
PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
