427 research outputs found

    Direct N-body Simulations of Rubble Pile Collisions

    Full text link
    There is increasing evidence that many km-sized bodies in the Solar System are piles of rubble bound together by gravity. We present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results will assist in parameterization of collision outcomes for Solar System formation models and give insight into fragmentation scaling laws. We use a direct numerical method to evolve the positions and velocities of the rubble pile particles under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on impact parameter and speed, impactor spin, mass ratio, and coefficient of restitution. Speeds are kept low (< 10 m/s, appropriate for dynamically cool systems such as the primordial disk during early planet formation) so that the maximum strain on the component material does not exceed the crushing strength. We compare our results with analytic estimates and hydrocode simulations. Off-axis collisions can result in fast-spinning elongated remnants or contact binaries while fast collisions result in smaller fragments overall. Clumping of debris escaping from the remnant can occur, leading to the formation of smaller rubble piles. In the cases we tested, less than 2% of the system mass ends up orbiting the remnant. Initial spin can reduce or enhance collision outcomes, depending on the relative orientation of the spin and orbital angular momenta. We derive a relationship between impact speed and angle for critical dispersal of mass in the system. We find that our rubble piles are relatively easy to disperse, even at low impact speed, suggesting that greater dissipation is required if rubble piles are the true progenitors of protoplanets.Comment: 30 pages including 4 tables, 8 figures. Revised version to be published in Icarus

    Identifying Near Earth Object Families

    Full text link
    The study of asteroid families has provided tremendous insight into the forces that sculpted the main belt and continue to drive the collisional and dynamical evolution of asteroids. The identification of asteroid families within the NEO population could provide a similar boon to studies of their formation and interiors. In this study we examine the purported identification of NEO families by Drummond (2000) and conclude that it is unlikely that they are anything more than random fluctuations in the distribution of NEO osculating orbital elements. We arrive at this conclusion after examining the expected formation rate of NEO families, the identification of NEO groups in synthetic populations that contain no genetically related NEOs, the orbital evolution of the largest association identified by Drummond (2000), and the decoherence of synthetic NEO families intended to reproduce the observed members of the same association. These studies allowed us to identify a new criterion that can be used to select real NEO families for further study in future analyses, based on the ratio of the number of pairs and the size of strings to the number of objects in an identified association.Comment: Accepted for publication in Icarus. 19 pages including 11 figure

    Mycobacterial species causing pulmonary tuberculosis At the korle bu teaching hospital, Accra,

    Get PDF
    Objective: Characterize mycobacterial species causing pulmonary tuberculosis (PTB) at the Korle-Bu Teaching Hospital in Ghana.Design: Sputum smear positive samples, two (2) from 70 patients diagnosed as having tuberculosis, after they had consented, were collected from the Korle-Bu Teaching Hospital Chest Clinic betweenJanuary and July 2003. Setting: Korle-Bu Teaching Hospital Chest Clinic, Accra. Results: Sixty-four mycobacterial isolates wereobtained and confirmed as members of Mycobacterium tuberculosis complex by colonial morphology and conventional biochemical assays. Fortyseven (73%) were M. tuberculosis, the human strain, 2 (3%) M. bovis, the bovine strain, 13 (20%) M. africanum I (West Africa type), and 2 (3%) M. africanum II (East Africa type). Conclusion: The results indicate that, there are various strains causing PTB at the Korle-BuTeaching Hospital and of great concern is M. bovis, which mostly causes extra-PTB in humans but found to cause PTB in this study. This calls for the need to conduct a nationwide survey using bothconventional and molecular techniques to characterize various mycobacterial species causing TB in Ghana. This will result in better understanding of the various strains circulating in the country andinform individual TB treatment regimen especially the inclusion or exclusion of pyrazinamide

    Did the Hilda collisional family form during the late heavy bombardment?

    Full text link
    We model the long-term evolution of the Hilda collisional family located in the 3/2 mean-motion resonance with Jupiter. Its eccentricity distribution evolves mostly due to the Yarkovsky/YORP effect and assuming that: (i) impact disruption was isotropic, and (ii) albedo distribution of small asteroids is the same as for large ones, we can estimate the age of the Hilda family to be 41+0Gyr4_{-1}^{+0}\,{\rm Gyr}. We also calculate collisional activity in the J3/2 region. Our results indicate that current collisional rates are very low for a 200\,km parent body such that the number of expected events over Gyrs is much smaller than one. The large age and the low probability of the collisional disruption lead us to the conclusion that the Hilda family might have been created during the Late Heavy Bombardment when the collisions were much more frequent. The Hilda family may thus serve as a test of orbital behavior of planets during the LHB. We tested the influence of the giant-planet migration on the distribution of the family members. The scenarios that are consistent with the observed Hilda family are those with fast migration time scales 0.3Myr\simeq 0.3\,{\rm Myr} to 3Myr3\,{\rm Myr}, because longer time scales produce a family that is depleted and too much spread in eccentricity. Moreover, there is an indication that Jupiter and Saturn were no longer in a compact configuration (with period ratio PS/PJ>2.09P_{\rm S}/P_{\rm J} > 2.09) at the time when the Hilda family was created

    The TAOS Project: Upper Bounds on the Population of Small KBOs and Tests of Models of Formation and Evolution of the Outer Solar System

    Get PDF
    We have analyzed the first 3.75 years of data from TAOS, the Taiwanese American Occultation Survey. TAOS monitors bright stars to search for occultations by Kuiper Belt Objects (KBOs). This dataset comprises 5e5 star-hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this dataset. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan & Sari (2005), Kenyon & Bromley (2004), Benavidez & Campo Bagatin (2009), and Fraser (2009). A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is comprised of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution.Comment: 18 pages, 16 figures, Aj submitte

    The material role of digital media in connecting with, within, and beyond museums

    Get PDF
    The connective potentials of digital media have been positioned as a key part of a contemporary museum visitor experience. Using a sociology of translation, we construct a network of visitor experiences using data from a digital media engagement project at a large and multi-sited museum in the United Kingdom. These experiences relate to (dis)connections with the museum, museum objects, and other visitors. Through this analysis we disclose the often contradictory roles of the non-human, including and going beyond the digital, as contributors to the success and failure of attempts to change museum visitor experiences through engagement activities rooted in narratives of participation and connectivity

    Extreme debris disk variability : exploring the diverse outcomes of large asteroid impacts during the era of terrestrial planet formation

    Get PDF
    The most dramatic phases of terrestrial planet formation are thought to be oligarchic and chaotic growth, on timescales of up to 100─200 Myr, when violent impacts occur between large planetesimals of sizes up to protoplanets. Such events are marked by the production of large amounts of debris, as has been observed in some exceptionally bright and young debris disks (termed extreme debris disks). Here we report five years of Spitzer measurements of such systems around two young solar-type stars: ID8 and P1121. The short-term (weekly to monthly) and long-term (yearly) disk variability is consistent with the aftermaths of large impacts involving large asteroid-sized bodies. We demonstrate that an impact-produced clump of optically thick dust, under the influence of the dynamical and viewing geometry effects, can produce short-term modulation in the disk light curves. The long-term disk flux variation is related to the collisional evolution within the impact-produced fragments once released into a circumstellar orbit. The time-variable behavior observed in the P1121 system is consistent with a hypervelocity impact prior to 2012 that produced vapor condensates as the dominant impact product. Two distinct short-term modulations in the ID8 system suggest two violent impacts at different times and locations. Its long-term variation is consistent with the collisional evolution of two different populations of impact-produced debris dominated by either vapor condensates or escaping boulders. The bright, variable emission from the dust produced in large impacts from extreme debris disks provides a unique opportunity to study violent events during the era of terrestrial planet formation

    Percutaneous versus surgical strategy for tracheostomy: protocol for a systematic review and meta-analysis of perioperative and postoperative complications

    Get PDF
    Background: Tracheostomy is one of the most frequently performed procedures in intensive care medicine. The two main approaches to form a tracheostoma are the open surgical tracheotomy (ST) and the interventional strategy of percutaneous dilatational tracheotomy (PDT). It is particularly important to the critically ill patients that both procedures are performed with high success rates and low complication frequencies. Therefore, the aim of this systematic review is to summarize and analyze existing and relevant evidence for peri- and postoperative parameters of safety. Methods/design: A systematic literature search will be conducted in The Cochrane Library, MEDLINE, LILACS, and Embase to identify all randomized controlled trials (RCTs) comparing peri- and postoperative complications between the two strategies and to define the strategy with the lower risk of potentially life-threatening events. A priori defined data will be extracted from included studies, and methodological quality will be assessed according to the recommendations of the Cochrane Collaboration. Discussion: The findings of this systematic review with proportional meta-analysis will help to identify the strategy with the lowest frequency of potentially life-threatening events. This may influence daily practice, and the data may be implemented in treatment guidelines or serve as the basis for planning further randomized controlled trials. Considering the critical health of these patients, they will particularly benefit from evidence-based treatment. Systematic review registration: PROSPERO CRD4201502196

    Dusty Planetary Systems

    Full text link
    Extensive photometric stellar surveys show that many main sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission), and at optical to near infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars (>10 Myr), it is inferred that this solid material not primordial, i.e. the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our Solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the Solar system debris disk). The presence of these "debris disks" around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. This chapter is divided in two parts. Part I discusses how the study of the Solar system debris disk and the study of debris disks around other stars can help us learn about the formation, evolution and diversity of planetary systems by shedding light on the frequency and timing of planetesimal formation, the location and physical properties of the planetesimals, the presence of long-period planets, and the dynamical and collisional evolution of the system. Part II reviews the physical processes that affect dust particles in the gas-free environment of a debris disk and their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets, Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
    corecore