444 research outputs found

    Time series irreversibility: a visibility graph approach

    Get PDF
    We propose a method to measure real-valued time series irreversibility which combines two differ- ent tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the in and out degree distributions of the associated graph. The method is computationally effi- cient, does not require any ad hoc symbolization process, and naturally takes into account multiple scales. We find that the method correctly distinguishes between reversible and irreversible station- ary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic pro- cesses (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identifiy the irreversible nature of the series.Comment: submitted for publicatio

    Critical behavior of a Ginzburg-Landau model with additive quenched noise

    Get PDF
    We address a mean-field zero-temperature Ginzburg-Landau, or \phi^4, model subjected to quenched additive noise, which has been used recently as a framework for analyzing collective effects induced by diversity. We first make use of a self-consistent theory to calculate the phase diagram of the system, predicting the onset of an order-disorder critical transition at a critical value {\sigma}c of the quenched noise intensity \sigma, with critical exponents that follow Landau theory of thermal phase transitions. We subsequently perform a numerical integration of the system's dynamical variables in order to compare the analytical results (valid in the thermodynamic limit and associated to the ground state of the global Lyapunov potential) with the stationary state of the (finite size) system. In the region of the parameter space where metastability is absent (and therefore the stationary state coincide with the ground state of the Lyapunov potential), a finite-size scaling analysis of the order parameter fluctuations suggests that the magnetic susceptibility diverges quadratically in the vicinity of the transition, what constitutes a violation of the fluctuation-dissipation relation. We derive an effective Hamiltonian and accordingly argue that its functional form does not allow to straightforwardly relate the order parameter fluctuations to the linear response of the system, at odds with equilibrium theory. In the region of the parameter space where the system is susceptible to have a large number of metastable states (and therefore the stationary state does not necessarily correspond to the ground state of the global Lyapunov potential), we numerically find a phase diagram that strongly depends on the initial conditions of the dynamical variables.Comment: 8 figure

    Sequential motif profile of natural visibility graphs

    Get PDF
    6 figures captioned6 figures captione

    Number theoretic example of scale-free topology inducing self-organized criticality

    Full text link
    In this work we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Quasiperiodic graphs: structural design, scaling and entropic properties

    Get PDF
    A novel class of graphs, here named quasiperiodic, are constructed via application of the Horizontal Visibility algorithm to the time series generated along the quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions represented by the Farey tree is inherited by their associated graphs. We are able to establish, via Renormalization Group (RG) theory, the architecture of the quasiperiodic graphs produced by irrational winding numbers with pure periodic continued fraction. And finally, we demonstrate that the RG fixed-point degree distributions are recovered via optimization of a suitably defined graph entropy

    Aplicación de las Nuevas Tecnologías GPS-GPRS para el estudio del comportamiento y mejora de la producción de la raza de lidia

    Get PDF
    La dehesa es un ecosistema agroforestal único que aúna un óptimo rendimiento económico con una menor incidencia en el medio. En la Península Ibérica hay unas 500.000 hectáreas de dehesas concentradas en Andalucía, Castilla y León, Extremadura, Castilla La Mancha y Madrid. La raza de Lidia es, dentro de las razas autóctonas, por su rusticidad y adaptación, una de las que mejor aprovechan y conservan la dehesa. Las condiciones de cría en grandes fincas (400-500 hectáreas de media), el espacio por cabeza (entre una y seis hectáreas por animal), la movilidad que le da su menor tamaño con respecto a otras razas y su crecimiento en libertad con mínima presencia humana la ha hecho indispensables para el mantenimiento del ecosistema de la dehesa. Con este trabajo pretendemos aplicar una tecnología innovadora como es el GPS-GPRS a la monitorización de la etología del ganado de la raza de Lidia durante todos los periodos de su vida y especialmente en aquellos momentos en los que el animal se ve sometido a diferentes prácticas de manejo. Para ello, se implementará la tecnología de GPS que permite el posicionamiento relativo de un objetivo mediante la captación de la señal de diferentes satélites específicos, lo que proporcionará información precisa sobre: el desplazamiento del ganado en un periodo determinado, las distancias recorridas, el territorio pastoreado, las áreas más querenciosas, su ritmo circadiano, las pautas de comportamiento, etc. Así mismo, el dispositivo incorporará sensores de parámetros biológicos como la temperatura ó el ritmo cardíaco, etc. La implementación de este sistema permitirá, a través del posicionamiento, realizar la óptima gestión de los recursos pastables de la dehesa, permitiendo ahorrar costes en alimentación, infraestructuras y personal, y ofrecer, en un futuro cercano, una atractiva herramienta al ganadero para realizar el control remoto de sus reses

    Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait

    Get PDF
    Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system

    Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks.

    Get PDF
    Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph theory and network science can be used for the characterization of time series. This approach has proved a convenient tool, and visibility graphs have found applications across several disciplines. Recently, an approach has been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (a) this approach allows vs to simultaneously capture and process relevant aspects of both local and global dynamics in an easy and intuitive way, and (b) this provides a suggestive bridge between time series and network theory that nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals differences in the similarities of temporal networks (and thus in correlated dynamics) across resting-state networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be picked up by this approach
    corecore