444 research outputs found
Time series irreversibility: a visibility graph approach
We propose a method to measure real-valued time series irreversibility which
combines two differ- ent tools: the horizontal visibility algorithm and the
Kullback-Leibler divergence. This method maps a time series to a directed
network according to a geometric criterion. The degree of irreversibility of
the series is then estimated by the Kullback-Leibler divergence (i.e. the
distinguishability) between the in and out degree distributions of the
associated graph. The method is computationally effi- cient, does not require
any ad hoc symbolization process, and naturally takes into account multiple
scales. We find that the method correctly distinguishes between reversible and
irreversible station- ary time series, including analytical and numerical
studies of its performance for: (i) reversible stochastic processes
(uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic
pro- cesses (a discrete flashing ratchet in an asymmetric potential), (iii)
reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv)
dissipative chaotic maps in the presence of noise. Two alternative graph
functionals, the degree and the degree-degree distributions, can be used as the
Kullback-Leibler divergence argument. The former is simpler and more intuitive
and can be used as a benchmark, but in the case of an irreversible process with
null net current, the degree-degree distribution has to be considered to
identifiy the irreversible nature of the series.Comment: submitted for publicatio
Critical behavior of a Ginzburg-Landau model with additive quenched noise
We address a mean-field zero-temperature Ginzburg-Landau, or \phi^4, model
subjected to quenched additive noise, which has been used recently as a
framework for analyzing collective effects induced by diversity. We first make
use of a self-consistent theory to calculate the phase diagram of the system,
predicting the onset of an order-disorder critical transition at a critical
value {\sigma}c of the quenched noise intensity \sigma, with critical exponents
that follow Landau theory of thermal phase transitions. We subsequently perform
a numerical integration of the system's dynamical variables in order to compare
the analytical results (valid in the thermodynamic limit and associated to the
ground state of the global Lyapunov potential) with the stationary state of the
(finite size) system. In the region of the parameter space where metastability
is absent (and therefore the stationary state coincide with the ground state of
the Lyapunov potential), a finite-size scaling analysis of the order parameter
fluctuations suggests that the magnetic susceptibility diverges quadratically
in the vicinity of the transition, what constitutes a violation of the
fluctuation-dissipation relation. We derive an effective Hamiltonian and
accordingly argue that its functional form does not allow to straightforwardly
relate the order parameter fluctuations to the linear response of the system,
at odds with equilibrium theory. In the region of the parameter space where the
system is susceptible to have a large number of metastable states (and
therefore the stationary state does not necessarily correspond to the ground
state of the global Lyapunov potential), we numerically find a phase diagram
that strongly depends on the initial conditions of the dynamical variables.Comment: 8 figure
Emergence of collective intonation in the musical performance of crowds
To be published in EPLTo be published in EP
Number theoretic example of scale-free topology inducing self-organized criticality
In this work we present a general mechanism by which simple dynamics running
on networks become self-organized critical for scale free topologies. We
illustrate this mechanism with a simple arithmetic model of division between
integers, the division model. This is the simplest self-organized critical
model advanced so far, and in this sense it may help to elucidate the mechanism
of self-organization to criticality. Its simplicity allows analytical
tractability, characterizing several scaling relations. Furthermore, its
mathematical nature brings about interesting connections between statistical
physics and number theoretical concepts. We show how this model can be
understood as a self-organized stochastic process embedded on a network, where
the onset of criticality is induced by the topology.Comment: 4 pages, 3 figures. Physical Review Letters, in pres
Quasiperiodic graphs: structural design, scaling and entropic properties
A novel class of graphs, here named quasiperiodic, are constructed via
application of the Horizontal Visibility algorithm to the time series generated
along the quasiperiodic route to chaos. We show how the hierarchy of
mode-locked regions represented by the Farey tree is inherited by their
associated graphs. We are able to establish, via Renormalization Group (RG)
theory, the architecture of the quasiperiodic graphs produced by irrational
winding numbers with pure periodic continued fraction. And finally, we
demonstrate that the RG fixed-point degree distributions are recovered via
optimization of a suitably defined graph entropy
Aplicación de las Nuevas Tecnologías GPS-GPRS para el estudio del comportamiento y mejora de la producción de la raza de lidia
La dehesa es un ecosistema agroforestal único que aúna un óptimo rendimiento
económico con una menor incidencia en el medio. En la Península
Ibérica hay unas 500.000 hectáreas de dehesas concentradas en Andalucía,
Castilla y León, Extremadura, Castilla La Mancha y Madrid.
La raza de Lidia es, dentro de las razas autóctonas, por su rusticidad y
adaptación, una de las que mejor aprovechan y conservan la dehesa. Las
condiciones de cría en grandes fincas (400-500 hectáreas de media), el
espacio por cabeza (entre una y seis hectáreas por animal), la movilidad que
le da su menor tamaño con respecto a otras razas y su crecimiento en libertad
con mínima presencia humana la ha hecho indispensables para el mantenimiento
del ecosistema de la dehesa.
Con este trabajo pretendemos aplicar una tecnología innovadora como es
el GPS-GPRS a la monitorización de la etología del ganado de la raza de Lidia durante todos los periodos de su vida y especialmente en aquellos momentos
en los que el animal se ve sometido a diferentes prácticas de manejo.
Para ello, se implementará la tecnología de GPS que permite el posicionamiento
relativo de un objetivo mediante la captación de la señal de diferentes
satélites específicos, lo que proporcionará información precisa sobre: el
desplazamiento del ganado en un periodo determinado, las distancias recorridas,
el territorio pastoreado, las áreas más querenciosas, su ritmo circadiano,
las pautas de comportamiento, etc. Así mismo, el dispositivo incorporará
sensores de parámetros biológicos como la temperatura ó el ritmo
cardíaco, etc. La implementación de este sistema permitirá, a través del
posicionamiento, realizar la óptima gestión de los recursos pastables de la
dehesa, permitiendo ahorrar costes en alimentación, infraestructuras y personal,
y ofrecer, en un futuro cercano, una atractiva herramienta al ganadero
para realizar el control remoto de sus reses
Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait
Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system
Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks.
Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph theory and network science can be used for the characterization of time series. This approach has proved a convenient tool, and visibility graphs have found applications across several disciplines. Recently, an approach has been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (a) this approach allows vs to simultaneously capture and process relevant aspects of both local and global dynamics in an easy and intuitive way, and (b) this provides a suggestive bridge between time series and network theory that nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals differences in the similarities of temporal networks (and thus in correlated dynamics) across resting-state networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be picked up by this approach
- …
