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Abstract. We address a mean-field zero-temperature Ginzburg-Landau, or φ4,

model subjected to quenched additive noise, which has been used recently as a

framework for analyzing collective effects induced by diversity. We first make use

of a self-consistent theory to calculate the phase diagram of the system, predicting

the onset of an order-disorder critical transition at a critical value σc of the

quenched noise intensity σ, with critical exponents that follow Landau theory of

thermal phase transitions. We subsequently perform a numerical integration of the

system’s dynamical variables in order to compare the analytical results (valid in

the thermodynamic limit and associated to the ground state of the global Lyapunov

potential) with the stationary state of the (finite size) system. In the region of the

parameter space where metastability is absent (and therefore the stationary state

coincide with the ground state of the Lyapunov potential), a finite-size scaling analysis

of the order parameter fluctuations suggests that the magnetic susceptibility diverges

quadratically in the vicinity of the transition, what constitutes a violation of the

fluctuation-dissipation relation. We derive an effective Hamiltonian and accordingly

argue that its functional form does not allow to straightforwardly relate the order

parameter fluctuations to the linear response of the system, at odds with equilibrium

theory. In the region of the parameter space where the system is susceptible to

have a large number of metastable states (and therefore the stationary state does

not necessarily correspond to the ground state of the global Lyapunov potential), we

numerically find a phase diagram that strongly depends on the initial conditions of the

dynamical variables. Specifically, for symmetrically distributed initial conditions the

system evidences a disorder-order transition for σ′

c < σc, yielding a reentrant transition

in the full picture. The location of σ′

c increases with parameter a and eventually

coalesces with σc, yielding in this case the disappearance of both transitions. On

the other hand, for positive-definite initial conditions the order-disorder transition is

eventually smoothed for large values of a, and no critical behavior is found accordingly.

At this point we conclude that structural diversity can induce both the creation and

annihilation of order in a nontrivial way.
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1. Introduction

In statistical mechanics, models describing the effect of impurities or heterogeneities in

the behavior of magnetic systems are gathered under the label of spin glasses [1] when the

source of heterogeneity affects the local spin interaction (and therefore the interaction

term in the Hamiltonian takes into account such disorder). Conversely, the so-called

random field models [1] address those systems where the source of heterogeneity only

yields an additive heterogeneous term (perturbation) in the Hamiltonian: in this case

the effect of disorder is akin to subject the system to a random external perturbation.

In both cases, such sources of heterogeneity typically have slower dynamical evolution

than the spins (or the dynamical variables), and therefore these sources of randomness

are said to be quenched. In the last decades a wealth of literature has addressed the

phenomenology behind spin glasses and random field models, including phase diagrams,

aging and other dynamical behavior, and comparison with their equilibrium counterparts

(see [1, 2, 3] and references therein).

In other branches of science the role of disorder in models characterizing the

dynamical behavior of multicomponent systems has also been addressed in the last

years. Noticeable examples include the effect that a certain amount of heterogeneity

in the natural frequencies of Kuramoto oscillators can yield on synchronization [4, 5],

the paradoxical constructive role that disorder can induce in the formation of ordered

structures in a plethora of different contexts [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17],

and the effect that the topology of the underlying network of interactions plays in

several types of dynamics [18, 19, 20, 21], to cite some. All these works address similar

generic questions, namely study the effect of structural disorder in the dynamics of

multicomponent systems.

In this paper we will address a paradigmatic example within equilibrium statistical

mechanics, the Ginzburg-Landau, also called φ4, model [22], in a version subjected

to such quenched disorder much in the vein of random field models. Although the

expected role of heterogeneity is that of destroying the ordered state, recent works [7, 9]

have addressed the positive role of the quenched noise in enhancing the response of this

model under the presence of an external periodic driving. In [6] the authors studied the

effects of introducing a quenched multiplicative dichotomous noise, and found that the

phase diagram is modified and gives rise to the onset of reentrant phase transitions not

present in the quenched noise free model.

Here we address the mean-field version of the model subjected to quenched additive

noise in absence of temperature [9, 23]. First, we present an analytical study of the phase

diagram by means of a self-consistent theory, both in the non-metastable and metastable

regions. The theory predicts an order-disorder transition as a function of the quenched

noise intensity σ, with mean field critical exponents equal to those of the thermal

equilibrium counterpart. We also perform a detailed numerical study of the system

for different sizes N in terms of finite-size-scaling theory and determine the scaling

exponents. We show that in the non-metastable region the order parameter fluctuations
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diverge with an exponent different from the one of the magnetic susceptibility. This

indicates a violation of the fluctuation-dissipation relation. In order to justify this

finding, we obtain in closed form an expression for the probability density function of

the system in terms of an effective Hamiltonian Heff(x), and accordingly argue that the

fluctuations of the order parameter cannot be straightforwardly related to the linear

response of the system. In the region where metastability does take place, results from

numerical simulations deviate from the phase diagram found through the self-consistent

theory and show a strong dependence on the specific initial conditions. Concretely, we

show that for symmetrical initial conditions, the simulations point out the presence of a

reentrant phase transition (disorder-order-disorder) with an ordered state whose width

varies and eventually disappears in the Ising limit, corresponding to a large valued of

a parameter in the Hamiltonian. This counterintuitive phenomenology supports the

fact that disorder or heterogeneity can not only induce dynamical disorder but, on the

contrary, can have an ordering role. Conversely, for positive-definite initial conditions

the phase transition is smoothed in the same limit, and no critical behavior is found in

that case.

The rest of the paper is organized as follows: in section 2 we present the model. In

section 3 we outline some considerations regarding the presence of metastable states. In

section 4 we derive the mean-field critical exponents associated to the magnetization and

magnetic susceptibility. In section 5 we numerically study the order-disorder transition

in the range of parameters where the system lacks metastable states. We provide

compelling evidence suggesting that the fluctuation-dissipation relation is not satisfied,

and we argue that a possible reason is that the influence of the average external field

h on the effective Hamiltonian yielding the probability density function of the system

cannot be readily stated as Heff(x) = H0(x) +Nmh, being m the magnetization, as it

happens in equilibrium theory. In section 6 we numerically explore the system’s behavior

in the presence of metastable states and discuss the role of the initial conditions in

the asymptotic stationary state of the system. We also point out the presence of an

disorder-order transition induced by diversity in the metastable situation. In section 7

we summarize our main results.

2. Additive Ginzburg-Landau model: preliminary considerations

We consider a set of N real dynamical variables xi(t), i = 1, . . . , N whose evolution is

given by a relaxational gradient flow [24] in a potential V :

dxi

dt
= −∂V (x; η)

∂xi
,

V =
N
∑

i=1

[

−a

2
x2
i +

1

4
x4
i +

1

4N

N
∑

j=1

(xj − xi)
2 − ηixi

]

, (1)
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or,

dxi

dt
= axi − x3

i +
1

N

N
∑

j=1

(xj − xi) + ηi . (2)

The Lyapunov potential V (x; η) depends, besides on the dynamical variables x ≡
(x1, ..., xN), on a set of variables η ≡ (η1, ..., ηN). Most commonly these variables

represent white noise of amplitude proportional to the temperature and the model

defines a class of thermal phase transitions. In this work, however, we take these

variables to represent quenched noise and the problem then belongs to a class of zero

temperature random field models. Accordingly, (η1, . . . , ηN) are independently drawn

from a probability distribution g(η) (which typically will be a Gaussian) of mean h and

standard deviation σ. The model can be thought as describing a set of globally coupled

heterogeneous units, being σ a measure of the amount of diversity or heterogeneity in

the system. As we are interested in this work in the effect of the diversity, σ will be

taken as a control parameter and we will study the effect that σ has on the collective

properties of the system.

This model is indeed a discretization of a mean–field version of the well known

Ginzburg-Landau Hamiltonian for a scalar field x(~r) under the presence of a random

external field η(~r) [1, 22]:

H =

∫

d~r

(

−a

2
x2 +

C

2
|~∇x|2 + u

4
x4 − ηx

)

, (3)

where, without loss of generality, we have rescaled variables and time such that

u = 1, C = 1/2. This Hamiltonian provides a coarse-grained description of critical

phenomena, and its formulation is based on some phenomenological considerations such

as locality and symmetries (rotational and translational); that is to say, this latter

expression is not calculated from the microscopic physics, but rather can be understood

as a coarse-grained description of the magnetization field x. By using the Boltzmann

weight factor e−H/T , where T is the temperature, this model has been used for instance

to describe the paramagnetic-ferromagnetic transition (where the Hamiltonian describes

the coarse-grained magnetization field). In the case of a uniform external field, Landau

theory elegantly describes a second-order thermal phase transition for this system, with

mean-field critical exponents β = 1/2, γ = 1 [1, 22]. This Hamiltonian also offers a

soft-spin description of the Ising model [1]: as a matter of fact, in the limit a → ∞
one recovers the Ising model (or the Random Field Ising Model (RFIM) in the case of

having a random external field). In the last decades the RFIM has been extensively

studied (see [1, 25] and references therein), where some specific results include the onset

of criticality in terms of a second-order phase transition in zero-temperature induced by

the disorder of the random field, with mean-field critical exponents [26, 27] as in the

thermal counterpart [28]. Several other features such as hysteresis, avalanche dynamics,

or return point memory effects, to cite a few, have been studied within the RFIM, both in

analytical (renormalization-group) and numerical (finite-size scaling) terms [25, 29]. The
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properties of the model have also been studied in the context of domain growth dynamics

both in the Ising limit[30, 31, 32] or using the full Ginzburg-Landau Hamiltonian [33] .

3. On the presence of metastability

From the dynamical point of view, it has already been said that the evolution is

relaxational in the Lyapunov potential V . Hence, the absolute minimum (or ground

state) of V located at x̄ ≡ (x̄1, . . . , x̄N ) must be considered as the global attractor of

the dynamics. It is obvious that the value of x̄ will depend on the specific realization

of the quenched noise variables (η1, . . . , ηN). On the other hand, the solutions of the

differential equations (2) tend to values xst
i = limt→∞ xi(t) which might or might not

coincide with x̄i. If the potential V has a single minimum, then the dynamics always

leads to x̄, but if there are additional, metastable, minima, then the asymptotic solution

xst depends on the initial condition x(t = 0) as it might get stuck in one of them. The

presence and relevance of these metastable minima depends in general (and besides the

particular realization of the quenched-noise variables) on the value of the parameter a

and the number of variables N .

In order to find the absolute minimum x̄ one needs to solve the system of N coupled

algebraic equations:

0 = ax̄i − x̄3
i +

1

N

N
∑

j=1

(x̄j − x̄i) + ηi. (4)

The solution is greatly simplified if one introduces the magnetization m as

m =
1

N

N
∑

i=1

x̄i, (5)

and then writes Eq.(4) as:

m+ ηi = (1− a)x̄i + x̄3
i . (6)

This equation allows one to find x̄i as a function of m and ηi (in fact as a function of

m + ηi). The explicit solution, x̄i = x̄(m + ηi) can be replaced in the definition of the

magnetization to obtain a self-consistency equation:

m =
1

N

N
∑

i=1

x̄(m+ ηi). (7)

The problem has been reduced from the simultaneous solution of the N coupled

equations (4), to the solution of a single one (7) although, in general, all possible

solutions m(1), m(2), . . . of this equation have to be obtained numerically. For a

given solution m(n) one can then find the respective values of x̄
(n)
i using the function

x̄
(n)
i = x̄(m(n)+ηi). In order to analyze the structure of the possible solutions of Eq.(7),

it is convenient to split the discussion in the cases a ≤ 1 and a > 1.
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3.1. Case a ≤ 1

This is the simplest case. A graphical analysis shows that Eq.(6) has a unique real

solution x̄i = x̄(m+ ηi) (see Appendix). Even in this case, it is possible that Eq.(7) has

more that one solution for m. This is typically the case for small values of N . See an

example in Fig. 1.

V

x

x

1

2

Figure 1. Lyapunov potential V (x1, x2) as defined in Eq. (1) for N = 2, η1 =

−0.48, η2 = 0.5 in the cases a = −1 (left), a = 0.8 (center) and a = 2.8 (right). While

the case a = −1 displays a single minimum, in the case a = 0.8 there are 3 minima

(2 metastable) and 2 maxima, whereas for a = 2.8 there are 4 minima (3 metastable)

and 5 maxima.

However, as N increases the number of metastable solutions decreases greatly. In

fact, it is possible to prove that in the thermodynamic limit, N → ∞, Eq.(7) can have

only either one or three solutions depending on the values of a, h, σ. The proof replaces

the sum over N by an integral over the probability distribution of the quenched-noise

variables:

m =

∫

dη g(η)x̄(m+ η). (8)

Let us assume that the probability distribution g(η) has a generic form g(η) = 1
σ
G
(

η−h
σ

)

.

Henceforth, all numerical results will use the Gaussian distribution G(z) = 1√
2π
e−z2/2.

A change of variables leads to:

m =

∫

dξ G(ξ)x̄(m+ h + σξ) ≡ Fσ(m+ h). (9)

As Fσ(z) is a monotonously increasing function satisfying Fσ(0) = 0 and with a

sigmoidal shape [36], there will be only one solution for m for all values of h if

the derivative satisfies F ′
σ(0) ≤ 1. On the other hand, for F ′

σ(0) > 1 there will

be either one or three solutions depending on the value of h. This analysis mimics

that of the Weiss mean-field theory [37] and allows one to compute the magnetization

m(h; a, σ) as a function of the mean value of the disorder h and the parameters a, σ.

It displays usual critical phenomena and hysteresis. The critical point is defined by

the condition F ′
σ(0) = 1 and can be achieved by varying a or σ. It is possible to

show that F ′
σ=0(0) = 1/(1 − a) and, since F ′

σ(0) is a decreasing function of σ, the

condition F ′
σ(0) = 1 can never be achieved for a < 0. This was a priori obvious since



Critical behavior of a Ginzburg-Landau model with additive quenched noise 7

in that case the Lyapunov potential in the absence of quenched noise has the global

minimum at xi = 0, ∀i, already a disordered state. Some numerical values (for the

Gaussian distribution) for the location of the critical diversity σc as a function of a

are: (a = 0.1, σc = 0.19616), (a = 0.5, σc = 0.50041), (a = 2/3, σc = 0.595233). In

the case a = 1, the Cardano formula simplifies to x̄ = (m + h)1/3 and it is possible to

perform analytically the integrals (again for a Gaussian distribution for the quenched-

noise variables) with the result [9] (a = 1, σc =
[

Γ(1/6)

21/33π1/2

]3/2

= 0.7573428 . . .).

3.2. Case a > 1

The problem in this case is that the cubic equation (6) can have either one or three

real solutions depending on whether the discriminant ∆i = 27(m+ ηi)
2 + 4(1 − a)3 is,

respectively, positive or negative. Besides, as before, several values of m can satisfy the

self-consistency Eq.(7). When there are three solutions for x̄i, (∆i < 0, this requires

a > 1) it is not clear a priori which one to chose in order to substitute in the self-

consistency relation (7). A possibility is to compute the Lyapunov potential V for each

of the possible solutions. However, since the maximum number of solutions can be

as large as 3N , this is not possible to carry out in practice for large N . The answer

arises when one realizes that the dynamical equation for xi(t) can be written also as

relaxational in a local potential vi(xi, m):

dxi

dt
= −∂vi(xi, m)

∂xi

,

vi =
1− a

2
x2
i +

1

4
x4
i − (m+ ηi)xi +

m2

2
. (10)

The solutions x̄(m + ηi) are nothing but the extrema of this local potential. Now we

notice that the Lyapunov potential can be written as sum of the local potentials:

V (x1, . . . , xN) =

N
∑

i=1

vi(xi, m). (11)

Therefore, the absolute minimum of V is achieved by choosing in each case the solution

x̄(m + ηi) that minimizes the local potential vi(xi, m). Explicit expressions for the

function x̄ are obtained using Cardano’s formula and are given in the Appendix.

The process to find the absolute minimum x̄ of the Lyapunov potential proceeds,

as before, by finding first m after solving numerically the self-consistency equation (7),

but using the correct function x̄(m+η). Similarly, the integral equation (8) can be used

to find the magnetization m(h; a, σ) in the thermodynamic limit. The phenomenology

of the solutions is similar to what was found in the case a ≤ 1 and will not be repeated

here.

An important difference, however, with the case a ≤ 1 is that now the Lyapunov

potential displays a large number of metastable minima for all values of N and,

consequently, also in the thermodynamic limit (a recent study for the metastable states

of the zero-temperature RFIM has been carried on in [34, 35]). Therefore, starting from
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arbitrary initial conditions, the asymptotic solution of the evolution equations xst
i will

in general differ from the values x̄i of the absolute minimum. It will be shown that new

phase transitions occur when one looks at the magnetization values that derive from

the stationary solution.

4. Critical behavior

We have seen that this mean-field model displays a second order phase transition

between an ordered state (|m| > 0) and a disordered state (m = 0) at a critical

value of the diversity σc. In order to derive the critical exponents of such transition,

we consider the self-consistency Eq. (9) and expand Fσ(m + h) in a Taylor series.

Since x̄(−m − h) = −x̄(m + h) (see Appendix) and assuming that the distribution

of noises is symmetric with respect to the mean value, G(−ξ) = G(ξ), the function Fσ

is antisymmetric Fσ(−m− h) = −Fσ(m+ h) and we get:

m = a1(σ)(m+ h) + a3(σ)(m+ h)3 + . . . (12)

with ak(σ) = F
(k)
σ (0)/k!. Hence, the magnetization at h = 0 is:

|m| =















0 for σ > σc,
√

1− a1(σ)

a3(σ)
for σ < σc.

(13)

As F ′
σ(0) − 1 changes sign at σ = σc, we can expand a1(σ) = 1 + α1(σc − σ) + . . ..

Accordingly, close to the transition the spontaneous magnetization behaves as |m| ∼
(σc − σ)β, with a critical exponent β = 1/2, as in Landau’s treatment of the thermal

phase transition.

To compute the critical behavior of the susceptibility χh ≡ ∂m

∂h

∣

∣

∣

∣

h=0

, we take

the derivative of both sides of Eq.(12) and set h = 0. This leads to χh =
a1(σ) + 3a3(σ)m

2

1− a1(σ)− 3a3(σ)m2
. Replacing Eq.(13) and a1(σ) = 1 + α1(σc − σ) + . . . we find

the critical behavior:

χh = A± |σ − σc|−1 (14)

with critical amplitudes A− = 1/(2α1) for σ < σc and A+ = 1/α1 for σ > σc. Therefore

the susceptibility critical exponent is γ = 1, the same, not surprisingly, than in Landau’s

theory.

5. Numerical results for a ≤ 1: violation of the fluctuation-dissipation

relation

In this section we present the results coming from the numerical integrations [38] of

the dynamical equations (2) in the case a ≤ 1. The objective is twofold. First, by

comparing with the analytical results valid in the thermodynamic limit, we want to
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Figure 2. Left panel: Order parameter m0 as a function of the diversity σ for a = 2/3.

The symbols correspond to the numerical integration of the dynamical equations (2)

for different system sizes N and a Gaussian distribution (zero mean, standard deviation

σ) of the quenched noises. The solid line is the magnetization m obtained by solving

the self-consistency Eq.(9) for h = 0. Right panel: Order parameter fluctuations, χ, as

a function of the diversity σ, for the same system sizes as the left panel (the vertical

axis is in logscale for presentation purposes).

check the importance of the metastable states that appear for finite N . Second, we will

use the theory of finite-size scaling in order to determine the exponents of the transition.

We will show that there is a violation of the fluctuation-dissipation relation in the sense

that the magnetic susceptibility can not be computed as the ensemble fluctuations of

the magnetization. By ensemble average 〈〈· · ·〉〉 we mean an average with respect to

realizations of the random quenched-noise variables as well as with respect to the initial

conditions x(t = 0). However, for the range of values of system size N employed in the

simulations, N ≥ 103, there was hardly any dependence on the initial condition for a

given realization of the random variables. This shows that metastable states either do

not exist or it is rare to get trapped in them for this range of values of a and N . In the

left panel of Fig. 2 we plot the order parameter m0 as a function of the diversity σ for

the value a = 2/3. As usual [39], the order parameter is defined as the ensemble average

of the absolute value of the magnetization m0 = 〈〈|m|〉〉 computed from the stationary

values as m = 1
N

∑N
i=1 x

st
i . As predicted by the self-consistent treatment explained

in previous sections, there is a phase transition from an ordered (ferromagnetic-like,

m0 > 0) to a disordered (paramagnetic-like, m0 = 0) phase as a function of σ. The

transition is smeared out by finite-size effects, but it approaches the solution of the

thermodynamic limit and the transition point σc as the system size N increases. In the

right panel of this figure we plot the normalized fluctuations of the order parameter,

defined as χ ≡ N
σ2 [〈〈m2〉〉 − 〈〈|m|〉〉2] as a function of the diversity σ. These fluctuations

have a maximum in the neighborhood of σc and, as shown in the right panel of Fig. 3,

they increase with increasing N as χ(σc) ∼ N b with b ≈ 2/3 for different values of the

parameter a, and hence diverge in the thermodynamic limit. As shown in the left panel
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Figure 3. Log-log plots of the order parameter m0 (left panel) and the fluctuations

χ (right panel) as a function of system size N for different values of a, at the

corresponding critical point σc(a). In all cases we find a good fit to a power-law

behavior: m0 ∼ N−c and χ ∼ N b with c = 0.16± 0.01 and b = 0.66± 0.02.
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Figure 4. Data collapse of the order parameter m0 (left panel) and the fluctuations χ

(right panel) according to the finite-size scaling relationsm0(σ,N) = N−v/2fm(Nv(1−
σ/σc)) and χ(σ,N) = N bfχ(N

v(1 − σ/σc)) using v = 1/3, b = 2/3. The goodness of

the collapse is an evidence supporting the validity of the scaling relations.

of the same figure, the order parameter at the critical point decreases as m0(σc) ∼ N−c

with c ≈ 1/6 and tends to zero in the thermodynamic limit.

Data for a range of values around the critical region can be collapsed through

standard finite-size analysis [40, 41] according to the scaling laws: m0(σ,N) =

N−cfm(N
v(1 − σ/σc)) and χ(σ,N) = N bfχ(N

v(1 − σ/σc)) with appropriate scaling

functions fm and fχ. A good fit, see Fig. 4, is obtained with v = 2c ≈ 1/3. Note

that this scaling form implies that in the infinite-size limit m0(σ) ∼ |σ − σc|β and

χ(σ) ∼ |σ − σc|−γ, with critical exponents β = c/v = 1/2 and γ = b/v = 2. We have

also performed a finite-size scaling of the fluctuations of the stationary value of the
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energy (global potential) at the critical disorder σc(a = 2/3) = 0.595233, according to

which one finds a value for the critical exponent of those fluctuations α ≈ 0, the same

than the (thermal) mean-field result for the specific heat (data not shown).

While the result of the previous section proved that the susceptibility χh has a

critical exponent γ = 1, the numerical simulations suggest that the fluctuations χ

diverge close to the critical point as a power law with a different exponent γ = 2.

This seems to constitute a violation of the fluctuation-dissipation relation. Since we

have restricted this analysis to the range a ≤ 1, this violation does not seem to be

related to typical situations of metastability, absence of time translation symmetry or

aging [1, 2, 3]. Furthermore, the hyperscaling relation 2β + γ = dcν, that holds in the

mean-field regime or for d ≥ dc, is satisfied using γ = 2 as it is known [42] that the

upper critical dimension is dc = 6 and ν = 1/2.

To explain this discrepancy, we note that the fluctuation-dissipation relation is

obtained typically for a system in the canonical ensemble at temperature T and whose

probability density function (pdf) is fx = Z−1 exp(−H/T ), with a partition function

Z =
∫

dx exp(−H(x)/T ), being H the Hamiltonian of the system. If the Hamiltonian

contains a magnetic interaction H(x) = H0(x) +Nmh, one can prove the fluctuation-

dissipation relation between the magnetic susceptibility χh and the fluctuations of the

magnetization 〈m〉:

χh ≡ ∂〈m〉
∂h

∣

∣

∣

h=0
=

N

T

[

〈m2〉 − 〈m〉2
]

, (15)

where 〈· · ·〉 denotes an average with respect to the probability distribution fx(x).

In our case, there are two averages: with respect to initial conditions and with

respect to realizations of the random variables η. We have already argued that for

a ≤ 1 and large values of N , the results are largely independent of initial conditions, so

all that contributes to the ensemble average 〈〈· · ·〉〉 are the noise variables. As there is a
one to one correspondence between the stationary values x̄ and η we can write the pdf

of x̄ in terms of the pdf of η:

fx(x̄1, · · · , x̄N ) = fη(η1, · · · , ηN) |J | . (16)

If we take the ηi’s to be independently distributed Gaussian variables, we have

fη(η1, · · · , ηN) =
N
∏

i=1

[

1

σ
√
2π

exp(−(ηi − h)2/2σ2)

]

. (17)

As Eq.(6) implies

ηi = (1− a)x̄i + x̄3
i −

1

N

N
∑

j=1

x̄j , (18)

it is possible to compute the determinant of the Jacobian matrix Jij =
∂ηi
∂x̄j

:

|J | =
(

1− 1

N

N
∑

j=1

1

3x̄2
j + 1− a

)

N
∏

i=1

[

3x̄2
i + 1− a

]

. (19)
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Figure 5. Numerical results of the average magnetization as a function of diversity

σ, for a system of N = 16384 coupled variables for different values of a ≥ 1 (for the

numerical integration of Eq.2, initial conditions are drawn from a symmetrical uniform

distribution U [−δ,+δ]). Note that depending on the specific value of parameter a, three

different behaviors take place: (I) an order-disorder transition at σc for a = 1, 1.4, (II)

a reentrant phase transition formed by a disorder-order transition at σ′

c coupled to an

order-disorder one at σc for intermediate values of a = 1.8, and (III) the absence of

any transition to an ordered state for the larger value a = 2.4.

Replacing Eqs.(17-19) in Eq.(16), one can write the pdf of x̄ as the exponential of an

effective Hamiltonian fx̄(x̄) = Z−1 exp(−Heff), with:

Heff(x̄) = − ln

(

1− 1

N

N
∑

j=1

1

3x̄2
i + 1− a

)

+

N
∑

i=1

[

[(1− a)x̄i + x̄3
i −m− h]2

2σ2
− ln

(

3x̄2
i + 1− a

)

]

(20)

However, as it can not be splitted in the form Heff = H0 +Nhm, it is not possible (at

least in a trivial manner) to relate the susceptibility to the fluctuations of the order

parameter.

6. Numerical results for a > 1: dependence on the initial conditions

In the case a > 1 the presence of metastable states is relevant as the dynamics usually

gets trapped in one of them. Therefore, in general, the asymptotic values xst depend on

initial conditions and the absolute minimum of the potential V might not be reached.

Accordingly, deviations from the self-consistent theory are expected to appear. In

this section we will study this case and show that a new phenomenology can appear

depending on the particular value of a and the distribution of the initial condition

x(t = 0). For the sake of concreteness, we have focused on two types of initial conditions:

symmetrical and positive-definite.
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Figure 6. Left panel: Phase diagram of the system, where the symbols correspond

to the values of critical points σc (associated to the order-disorder transition) and

σ′

c (associated to the disorder-order transition) as a function of a, for a system of

N = 16384 (derived numerically integrating Eq.2 with initial conditions drawn for a

symmetrical uniform distribution [−δ,+δ]). In the region a > 0 the system evidences

an order-disorder phase transition at σc, the location of this transition increasing with

a. The values of σc (in the thermodynamic limit) can be derived from the self-consistent

theory as those satisfying F ′

σc

(0) = 1, and are represented by the solid line. In the

region a > 1 the system presents metastable states even in the thermodynamic limit

and the solid line refers to the location of phase transition derived from the analysis of

the ground state of the Lyapunov potential. At odds with the self-consistent theory, we

numerically find for intermediate values of a the coexistence of two phase transitions

(reentrant transition), where the location of both critical points converge for increasing

values of a until coalescence. At this point the ordered state is completely destroyed for

all values of σ. Right panel: Same diagram as for the right panel, when the numerical

integration of Eq.2 is performed with initial conditions drawn for a uniform distribution

in the positive-definite interval [0, 2δ]. In this case, the phase transitions disappear for

a & 1.4 as in this case the order parameter m0 tends to zero smoothly with σ, see right

panel of Fig8.

6.1. Symmetrical initial conditions

The initial values xi(t = 0), i = 1, . . . , N , are independently drawn from a uniform

distribution in the interval [−δ,+δ], for a given value of δ. In Fig. 5 we plot the average

magnetization m0 = 〈〈|m|〉〉 as a function of diversity σ for different values of a and

system size N = 16384 for δ = 2.5. The data have been averaged over 102 initial

conditions for x(t = 0) and then over 102 realizations of the quenched noise variables

(104 averages in total). At variance with the case a ≤ 1 (which is also shown in the

figure for comparison) we find three possible scenarios: (i) for a & 1 (weak metastable

regime, a = 1.4 in the figure) one observes the same phenomenology as for a ≤ 1:

an order-disorder transition at a critical value σc(a). (ii) For larger values of a, the

former transition is still present at σc, but a new transition (from a disordered state

m0 = 0 to an ordered one m0 > 0 as σ increases) is found at σ′
c < σc, see the curve
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Figure 7. Left panel: Numerical results of the order parameter as a function of σ, for

different system’s size and a = 1.8, where a reentrant phase transition takes place (for

the numerical integration of Eq.2, initial conditions are drawn from a symmetrical

uniform distribution U [−δ,+δ]). Exact results from the self-consistent theory are

represented in the solid line. The deviations from the theory are related to the fact

that the system does not reach the ground state of the Lyapunov potential as it gets

trapped in metastable states. Right panel: Fluctuations of the order parameter as

a function of σ for the same system as the right panel. Fluctuations have a peaked

maximum that scales with system’s size close to both transition points.

corresponding to a = 1.8 in the figure. In this case, we find the counterintuitive result

that a certain level of diversity in the quenched noise is needed to induce order at

σ = σ′
c, whereas a large level of diversity destroys again the ordered state (reentrant

phase transition). (iii) Finally, for increasing a, σ′
c increases and σc decreases, eventually

coalescing for a > ac ≈ 2.4, where the ordered state disappears. Thus, for large values

of a, the system does not evidence any transition and the stationary phase is always

the disordered one. We point out that in the curve for a = 2.4, the magnetization is

not exactly zero for intermediate values of the diversity due to a finite-size effect: m0

decreases and approaches zero for all values of σ as the system size increases, something

that does not occur in cases (i) and (ii). All these features are illustrated in the phase

diagram plotted in the left panel of Fig. 6: (i) For 1 < a . 1.6 the usual order-disorder

transition appears, although the value of σc is smaller that the one derived from the

analysis based upon the structure of the global attractor x̄. (ii) For 1.6 . a . 2.4 there

is a new transition from a disordered to an ordered state at a value σ′
c < σc. (iii) Finally,

for a & 2.4 the only phase encountered is the disordered one.

In order to characterize the transitions that occur in region (ii), we have run

extensive simulations for different system sizes in the case a = 1.8. The order parameter

m0 is displayed in the left pane of Fig. 7. By looking at the difference with the

magnetization curve derived from the theoretical analysis, it is clear from this figure that

the system is not able to reach the absolute minimum neither for small or large diversity

σ. We observe at both transitions the same qualitative dependence with system size
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that was discussed in the case a ≤ 1. As we don’t have now a theoretical prediction for

σ′
c or σc the numerical analysis of the data is much less conclusive. Pseudo-critical points

σc(N) and σ′
c(N) can be defined as the location of the maximum of the fluctuations χ

of the order parameter, see the right panel of Fig. 7. The fluctuations scale roughly as

χ(σ′
c(N)) ∼ N b′ and χ(σc(N)) ∼ N b with b′ ≈ b ≈ 0.9. However, it is difficult to obtain

reasonably good quality fits of the data to the standard finite-size-scaling relations used

in the case a < 1. Furthermore, the data show a dependence on δ (data not shown)

such that σc and σ′
c adopt different values for small δ but saturate for δ & 2.5.

Summing up: if the initial conditions are distributed in a symmetrical interval, the

order region is much reduced with respect to the predictions based upon the structure

of the ground state. There is a region in parameter space where the system undergoes

what appear to be well defined phase transitions, from disorder to order and back to

disorder at σ′
c and σc, respectively. The order-disorder transition (σc) is related to the

one found in the regime a < 1, while the disorder-order transition (at σ′
c < σc) is a new

behavior whose nature is genuinely metastable. For a & 2.4 the system is never in the

ordered state.

6.2. Positive-definite initial conditions

The initial values xi(t = 0), i = 1, . . . , N , are independently drawn from a uniform

distribution in the interval [0, 2δ], for a given value of δ. Obviously, by symmetry

reasons, the same results would be obtained in the initial conditions were drawn from

the interval [−2δ, 0]. In Fig. 8 we plot the average magnetization m0 = 〈〈|m|〉〉 as a

function of diversity σ for different values of a = 1.2 (left panel) and a = 1.8 (right

panel), for different system sizes N and values of δ. These two values of a evidence

slight different behaviors: for a = 1.2, while the sharpening finite-size effect of the

magnetization is hardly seen in the plot, the fluctuations still increase with system size

close to the transition (data not shown), what suggests the presence of a phase transition

in the thermodynamic limit. Note that the dependence on the width of the initial

condition δ is very weak and results are basically indistinguishable for δ ≥ 0.5. On the

other hand, for a = 1.8 there is hardly any dependence on the system size both for the

magnetization and its fluctuations. The magnetization m0 tends to zero smoothly with

σ and the fluctuations do not increase with system size (data not shown): the transition

is smoothed and no critical behavior is present. Again, there is a dependence with the

value of δ for small δ but the curves for δ = 2.5 and δ = 5.0 are indistinguishable from

each other. Summing up, for positive-definite initial conditions, the phase transition

from order to disorder disappears at a value a ≈ 1.6 (the actual value depends of the

width δ), such that the system shows always some degree of order for a & 1.6 (see the

right panel of Fig.6). In this sense, the ordered region is enhanced with respect to the

predictions based upon the structure of the ground state.



Critical behavior of a Ginzburg-Landau model with additive quenched noise 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5

m
0

σ

a=1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

m
0

σ

a=1.8

Figure 8. Numerical results of the order parameter as a function of σ, for different

system’s size N = 4096, 8192, 16384, and a value a = 1.2 (left panel) and a = 1.8

(right panel). For the numerical integration of Eq.2, initial conditions are drawn from

a positive-definite uniform distribution U [0, 2δ], with δ = 0.1, 0.5, 2.5, 3.0. The effect

of the interval size saturates for approximately δ ≥ 0.5 and 2.5 for the left and right

panel respectively. While finite size effects in the magnetization are hardly observed

for a = 1.2, fluctuations still increase with system size close to the transition. On the

other hand, for a = 1.8 no finite-size effects are observed, neither for the magnetization

nor for its fluctuations: the transition is smoothed and no critical behavior is observed.

7. Conclusions

In this work we have studied the mean-field version of a Ginzburg-Landau, or φ4, model

with additive quenched noise at zero-temperature. The model, that has recently been

proposed in the framework of collective behavior induced by diversity [7, 9], is a field

version of the random field Ising model well studied in the literature. As a function of

diversity σ, a self-consistent theory predicts the presence of an order-disorder transition

at a critical value σc, with mean field critical exponents that are equal than those of

Landau’s theory of thermal phase transitions. Numerical integrations of the dynamical

equations (2) are also performed for comparison. In the range of parameters where the

system lacks metastable states (a ≤ 1), finite-size scaling relations show that the order

parameter fluctuations diverge quadratically, rather than with γ = 1 as in thermal,

equilibrium, phase transitions. This suggests a violation of the fluctuation dissipation

not associated to metastable effects such as lack of time translational invariance or aging

[1, 2, 3]. To explain this fact, we compute an effective Hamiltonian and argue that it

cannot be readily expressed as Heff = H0 + Nhm: as a consequence, the fluctuations

of the order parameter cannot be straightforwardly related to the linear response, as

it happens in equilibrium theory. In the range of parameters where metastability is

likely to appear (a > 1), stationary values typically do not reach the minimum of the

Lyapunov potential, and accordingly numerical results deviate from the self-consistent

theory, showing a strong dependence in the initial conditions. For a symmetrical
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distributed initial condition in the interval [−δ,+δ], the ordered region is much reduced

with respect to the predictions based upon the structure of the ground state of the

potential. Furthermore, there is a region of values of a for which a new transition from a

disordered to an ordered state takes place at σ′
c < σc. In this case, diversity can not only

destroy an ordered state but also induce order from a disordered metastable state. This

new transition is genuinely metastable, and its location increases for increasing values

of a, until coalescing with σc, where the ordered phase completely disappears. On the

other hand, when the initial condition is distributed in [0, 2δ], large enough values of a

destroy the critical behavior of the order-disorder transition and some degree of order

remains at every value of the diversity σ.

We conclude that structural diversity can induce both the creation and annihilation

of order in a nontrivial way, and deeply modify the dynamics of the diversity-free system

counterpart. On the other hand, the apparent violation of the fluctuation-dissipation

relation should be further investigated; at this point we can conclude that to directly

relate the order parameter fluctuations to the linear response of a system can be tricky,

even in the absence of metastability. This is particularly relevant in problems involving

the estimation of critical exponents in nonequilibrium phase transitions.
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Appendix: solutions of the cubic equation

We give explicit expressions for the function x̄(m + η) defined as the convenient real

solution of the cubic equation αx+ x3 = z, where α = 1− a and z = m+ η.

In the case α ≥ 0 there is only one real solution to this equation as given by

Cardano’s formula

x̄(z) = u− α/(3u), u =
3

√

z

2
+

√

z2

4
+

α3

27
. (21)

For α < 0, the same formula applies if the discriminant ∆ ≡ 27z2 + 4α3 is positive

∆ ≥ 0, i.e. z /∈
(

−2(−α/3)3/2,+2(−α/3)3/2
)

. Otherwise, out of the three real solutions,

the one that minimizes the local potential v(x) = α
2
x2 + 1

4
x4 − zx is obtained using the

trigonometric form of Cardano’s formula:

x̄(z) = 2 sign(z)

√

−α

3
cos

(

1

3
arccos

√

−27z2

4α3

)

, (22)

where the arccos function takes values in the principal branch [0, π/2] of. Note that, in

every case, the function x̄ is antisymmetric x̄(z) = −x̄(−z).
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