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Emergence of collective intelligence in musical performances

Lucas Lacasa∗

School of Mathematical Sciences, Queen Mary University of London, Mile End Road E14NS London (UK)

The average individual is typically a mediocre singer, with a rather restricted capacity to sing a
melody in tune. Yet when many singers are assembled to perform collectively, the resulting melody
of the crowd is suddenly perceived by an external listener as perfectly tuned -as if it was actually
a choral performance- even if each individual singer is out of tune. This is an example of the
so-called wisdom of crowds effect and can be routinely observed in music concerts or other social
events, when a group of people spontaneously sings at unison. In this paper we provide a simple
mechanistic explanation for the onset of this collective phenomenon.

The wisdom of crowds [1] is a popular concept
englobing several examples of collective intelligence,
that emerges where the collective response of a group
of entities is in some sense better than individual ones.
Pioneered by Galton [2], this effect was in its simpler
incarnation a direct consequence of the law of large
numbers. Evidence of collective intelligence spans today
social systems in different species [3–5] and activities
ranging from optimal estimation [3], navigation [6],
or sensing [7] to cite a few. In this work we focus
on the phenomenon of collective musical performance.
We are not interested in choral performances but on
self-organized ’crowd performances’ that take place in
popular music concerts [8], sport events (e.g. in football
stadiums) or other social events, or simply within
groups of people that join together to perform a song
or melody. Our contention is that whereas the average
individual is not necessarily a gifted performer and does
not particularly sing in tune (i.e. individual musical
performances are typically of poor quality), when a large
group of these imperfect singers perform at unison the
resulting collective signal is surprisingly tuned. As a con-
sequence, crowd performance is enhanced as compared
to individual ones and is thus perceived as a choral one.
Whereas some research suggest that individuals improve
while performing at unison [9] -suggesting that imitation
might be underpinning this phenomenon-, here we show
that imitation, while clearly boosting this effect, is not
itself required for the enhancement to take place in the
first place. We present a toy model that supports this
claim and that provides a simple explanation for the
origin of this collective phenomenon.

In our toy model the melody to be played consists of
a pure tone with frequency T , which the crowd inter-
prets at unison. As individuals (or agents, from now on)
don’t usually have a perfect ear, the collective output
produced by the crowd will be a inharmonic complex
tone that develops out of the mixture of each agent’s
contribution. For simplicity we will assume that each
agent contributes with a pure tone -i.e. a sinusoidal wave
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with a single frequency-. Consider two tones with fre-
quency f1 and f2 and similar amplitudes, played simul-
taneously. What is the pitch of this complex tone? If
f1 and f2 are sufficiently close, then the pitch is some-
where close to (f1 + f2)/2 and is accompanied with a
beating at |f1 − f2|. As their difference increases the
beating disappears, and for sufficiently different frequen-
cies one can indeed perceive both frequencies. Further-
more, if f2 = pf1 for some integer p, then the pitch of
the complex tone is just f1, coinciding with the funda-
mental frequency that corresponds to the greatest com-
mon divisor between both frequencies, GCD(f1, f2). For
a complex tone with N > 2 partials, the story is even
more intricate. The fundamental frequency can be easily
worked out as GCD(f1, f2, . . . , fN). If we superpose the
frequencies f, 2f, 3f, ... (that is, a fundamental f and a
few higher harmonics) with more or less the same am-
plitude, then the resulting pitch will indeed be f , coin-
ciding again with the fundamental frequency. If we now
superimpose 2f, 3f, 4f, ... we will still perceive f which
in this case is indeed a missing partial. This happens as
in the range 20-2000Hz, the ear has the ability to fuse
harmonically-related frequencies into a single entity with
a fundamental frequency, even in the case where such
fundamental frequency is missing. Now, in general the
fundamental frequency (either physically present or miss-
ing) does not correspond to the perceived pitch, i.e., to
the effective frequency perceived by an external agent
who is listening to the collective output. As a matter of
fact, pitch is a psychoacoustic phenomenon more com-
plex than basic frequency superposition. This fact be-
comes evident when we combine partials which are not
harmonically related. Consider the mixture of frequen-
cies at 120, 220, 320, 420, 520, and 620 Hz in equal mea-
sure. The GCD of the mixture is 20 Hz (a frequency
which is indeed barely audible), however the perceived
-or virtual- pitch coincides in this case with a mysterious
frequency of 104.6 Hz [10].

There are essentially two theories (or groups of theories)
on pitch perception [10], namely those focusing on spa-
tial separation of partials in the ear (Fourier decompo-
sition theories pioneered by Ohm and Helmholtz) and
those that focus on the temporal separation, pioneered
by Licklider. These are not necessarily mutually exclu-
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FIG. 1: (Left panel) Numerical evaluation of the roots of equation 1 for a complex tone of three partials with f1 = 820 Hz,
f2 = 1020 Hz, f3 = 1220 Hz. Each solution -denoted as a frequency with low numerical error- corresponds to a local peak in
the autocorrelation function (and its harmonics). Two possible solutions with different βi are depicted. The perceived pitch is
indeed f̄ = 203.9Hz [10, 14], which corresponds to βi = 4, 5, 6. (Right panel) Autocorrelation function of the same complex
tone, where one can appreciate that the perceived pitch is indeed associated with the first non-trivial ’large peak’, whereas
other peaks that take place sooner are not strong enough to develop into the perceived pitch.

sive, and both might have their range of validity. Here we
use the latter approach as this seems to be better suited
to deal with the range of frequencies usually displayed in
modern music. As pitch in this context is related to the
tendency to find repetitions at given intervals, it makes
sense to look at the presence of these repetitions over
time in the autocorrelation function. For instance, in
the example above the first non-trivial peak occurs at
t = 0.009565s which is indeed related to a periodic rep-
etition at f = 104.6 Hz, precisely equal to the perceived
pitch.
To be more precise, let us consider a complex tone of
N sinusoidal partials with frequency fi and amplitude

ai given by s(t) =
∑N

i=1 ai sin(2πfit), and denote by f̄
the perceived pitch of this mixture. Then f̄ = 1/τM
where τM is the time position of the earliest tall peak
in the autocorrelation function C(τ) = 〈s(t)s(t + τ)〉t.
This is an extremum thus dC/dτ |τM = 0. Moroever,
as the product sin(t) sin(t + τ) is maximized for τ be-
ing a multiple of 2π, it is easy to see that for any
local peak at τM of the autocorrelation function one
has sin(2πfiτM ) ≈ 2π(fiτM − βi), for some integer βi.
Putting all these conditions together, according to Heller
[10] the peaks of the autocorrelation function fulfil the
following self-consistent equation

1/τM = f̄ ≈

∑N

i=1 a
2
i f

2
i

∑N

i=1 a
2
iβifi

, (1)

where for i = 1, . . . , N , βi ∈ Z is the nearest integer
to fi/f̄ . This formula was first derived in the context
of molecular spectroscopy to account for the so-called
missing mode effect (MIME) [11–13]. It is important to

highlight that f̄ is not just a convoluted average of each
frequency [12], but in some sense is an emergent quantity
out of the combination of partials, much like in the lu-
minescence spectra of complex molecules some regularly
spaced vibronic progressions emerge even if they don’t
correspond to any ground-state normal mode of vibra-
tion (or average) of the molecule [13]. We solve eq.1 nu-
merically and assume that fapp is a good approximation
to f̄ if

(

fapp −

∑N

i=1 a
2
i f

2
i

∑N

i=1 a
2
i β̂ifi

)

· 100/fapp < ǫ,

where β̂i is the nearest integer to fi/fapp. As a rule of
thumb, we set ǫ = 10−2, which means that fapp satisfies
eq. 1 self-consistently with an error which is less 0.01%
of the frequency fapp.

Note that eq.1 is multivalued: at least it admits as
solutions the virtual pitch and its infinitely many
subharmonics. Indeed, for equal frequencies fi = k ∀i,
the virtual pitch is trivially f̄ = k and this is a solution
of eq.1 for βi = 1 ∀i, but so are subharmonics k/p,
for p ∈ N

+ and βi = p ∀i. Also, for two close enough
frequencies f1 ≈ f2, then (f1 + f2)/2 is an approximate
solution which indeed corresponds to the perceived
pitch. Now, eq.1 captures the location of peaks in the
autocorrelation function, but unfortunately not their
height. Consider for instance the complex tone formed
by partials of equal amplitude at frequencies 820, 1020,
and 1220 Hz. The GCD is 20 Hz, right at the threshold
of hearing, and seems an unlikely perceptual result of
combining these much higher frequencies. Pierce [14]
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FIG. 2: (Left panel) Autocorrelation function of a complex tone formed by N frequencies fi ∼ N (1000, 50), for N = 10
(solid line), N = 102 (dashed line) and N = 103 (dashed dotted line). In every case the first non-trivial large peak in the
autocorrelation function lies at tau = 0.001 seconds, yielding a perceived pitch f̄ = 1000Hz. Interestingly, other peaks in the
autocorrelation function (associated with other solutions of eq. 1) vanish as N increases with a where one can appreciate that
the perceived pitch is indeed associated with the first non-trivial ’large peak’, whereas other peaks that take place sooner are
not strong enough to develop into the perceived pitch. (Eight panel) Autocorrelation function of a complex tone formed by
N = 100 frequencies fi ∼ N (1000, σ2), for increasing values of σ2. The perceived pitch converges to f̄ = 1000Hz for a rather
large range of values σ2, after which the complex tone does not have a clear perceived pitch.

cites this case as an interesting example and reports
that the perceived pitch is 204 Hz. A possible solution
can be found for β1 = 1, β2 = β3 = 2, for which setting
ai = 1, we get f̄ = 604 Hz. According to the left panel
of fig.1, this seems indeed the solution with minimal
numerical error. The solution with second minimal error
corresponds to a higher combination β1 = 4, β2 = 5,
β3 = 6 for which f̄ ≈ 203.9 Hz. However, it is this latter
candidate that coincides with the empirical value found
by Pierce. If we look at the autocorrelation function
of the complex tone (right panel of the same figure),
we indeed discover peaks at 1/604 = 0.001655 and
1/203.9 = 0.004908 seconds (among others), however
the latter is the sharpest peak and hence constitutes the
perceived pitch.
All in all, the systematic computation of the perceived
pitch is not straightforward. Heller [10] speaks about
three criteria to determine what peak corresponds to
the perceived pitch of a complex tone: (i) the sooner in
the autocorrelation function (sooner times corresponds
to larger frequencies), (ii) the larger the autocorrelation
of the peak, and (iii) the sharper the peak. However
looking at the solutions of eq.1 we are only able to
discern criterion (i), therefore in what follows we will
focus on the autocorrelation function to discern the
perceived pitch from the set of solutions of eq.1.

Basic model. Consider N agents aiming to sing at
unison a given frequency T . We assume that all agents
sing pure tones (i.e. sinusoids of frequency fi) at approxi-
mately the same amplitude (ai = K ∀i for someK ∈ R

+)
and model the imperfection of each agent as an indepen-

dent Gaussian deviation. That is, ∀i = 1, . . . , N the
frequency fi = f t+ξ, where ξ ∼ N (0, σ2). The standard
deviation σ therefore tunes the diversity of imperfec-
tions. Note that trivially, limN→∞ GCD(f1 . . . fN ) = 0.
Is there a perceived pitch for this complex tone? Apply-
ing eq.1 in this case, one finds a frequency

f̄ ≈

∑N

i=1(T + ξi)
2

∑N

i=1 βi(T + ξi)
=

∑N

i=1 T
2 +

∑N

i=1 ξ
2
i + 2

∑N

i=1 Tξi
∑N

i=1 βiT +
∑N

i=1 βiξi
.

To prove that the crowd sings better than each individ-
ual in a nontrivial way, we need to (i) find that f̄ ≈ T is
a solution to the latter equation that (ii) corresponds to
an early tall peak in the autocorrelation function of the
signal and that (iii) this holds for a range of values of σ.
The criterion (iii) simply means that if the phenomenon
only holds for very small σ, one could argue that in prac-
tice the perceived pitch harmonically fuse barely audible
deviations from the correct pitch. In the contrary, if σ
is large enough such that every random sample is almost
surely out of tune then the emergence of a tuned per-
ceived pitch will be clearly a collective effect.
First, as eq.1 is multivalued we focus in the solution as-

sociated to βi = 1 ∀i. In this case, trivially
∑N

i=1 T
2 =

NT 2 and
∑N

i=1 βiT = NT . According to the central
limit theorem, the sum of N Gaussian random vari-
ables N (0, σ2) variables is a Gaussian random variable
N (0, Nσ2). Thus for N ≫ 1 we can use expected values

such that
∑N

i=1 βiξi → 0 and
∑N

i=1 ξ
2
i → N〈ξ2〉 = Nσ2

(alternatively, the sum of N squared standard Gaus-
sian random variables is a random variable which is dis-
tributed as a χ2 distribution with mean N , so if the orig-
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inal Gaussian variables are not standard but have vari-
ance σ2, then the mean of the rescaled χ2 distribution
is Nσ2). Altogether, the solution to eq.1 associated to
βi = 1 ∀i is

f̄ ≈
NT 2 +Nσ2

NT
= T + σ2/T (2)

Provided that extremely large deviations from the
correct tone are not abundant among individual per-
formance (so that σ ≪ T is a good approximation)
then the second term in the latter solution is ≪ T and
then at leading order f̄ ≈ T . Now, to evaluate whether
this frequency indeed corresponds to the earliest tall
peak in the autocorrelation funcion, we have tested this
prediction numerically in figure 2. While human hearing
ranges from 20 to 20000 Hz, the greater sensitivity is
known to lie within 200 and 2000 Hz. We therefore
discard solution frequencies under 100 Hz (that is, times
larger than 10−2 seconds) as they will only contribute to
perceived background noise. In the left panel of figure
2 we plot the autocorrelation function of a complex
tone made by N sinusoids with equal amplitude and
frequencies fi ∼ N (T, 50), for T = 1000 Hz. We can
observe that as the number of agents N increases, the
frequency f̄ = T indeed emerges as the clear perceived
pitch (numerical evaluation of the solutions of eq.1 are
plotted in an appendix figure). In the right panel of
the same figure we explore the effect of increasing σ in
the shape of the autocorrelation function for N = 100
frequencies (solutions of eq.1 in this case are again sum-
marized in an appendix). As expected, the frequency
f̄ = 1000 Hz coincides with the perceived pitch for a
reasonably large range of values of σ. For σ = 10 and
100 the peak is clearly visible although it decreases as σ
increases. Note that the just noticeable difference (which
quantifies the threshold at which a change in pitch is
perceived) depends on the frequency and for 1000 Hz
this is smaller than 10 Hz. This means that for σ = 100
most of the individual agents will be effectively out of
tune, however the perceived pitch of the aggregate will
still emerge as being in tune. Accordingly, the emergent
pitch is robust even if each agent is not particularly
gifted, musically speaking. For even larger values
(σ = 400) the spectrum approaches a flat shape, the
peak has fade away and no clear pitch emerges accord-
ingly. All in all, we can conclude that a crowd indeed
sings better as a whole than each individual separately,
even if no synchronization takes place among individuals.

Introducing short-range interactions. Remark-
ably, our basic model does not require that each agent
interacts for the perceived pitch to emerge as the
’correct’ collective intonation. It is however true that
in realistic cases individuals that sing in groups tend
to tune up with their surrounding, if in their close
neighborhood there is at least some other person with
better intonation [9]. The intonation and imitation
capacities are definitely heterogeneous across people,
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FIG. 3: Numerical evaluation of standard deviation of the
distribution of frequencies of the lattice model, as interactions
take place over time. Already after one simulation step, the
effective standard deviation considerably decreases, what in
turn implies that the virtual pitch approximates its leading
order f̄ ≈ T

in what follows we show that in general terms this
imitation process effectively reduces the value of σ in
eq.2.
To explore the effect of imitation we propose the
following toy model: we locate agents in the vertices
of a two-dimensional lattice, and make them vibrate at

a given frequency f
(t)
i which can now be dynamically

updated. Initially we again set f
(0)
i = T+ξ, for Gaussian

i.i.d. random variables ξ ∼ N (0, σ2). Then, at each
simulation time t the dynamics for each agent i are such
that: (i) if any surrounding agent is singing more in tune

than i (modeled by the fact that in the Von Neumann

neighborhood of i |f
(t)
i − T | < min{|f

(t)
j − T |}nn), then

(ii) i updates his frequency by imperfect imitation, such

that f
(t+1)
i = f

(t)
i + C(i)[min − f

(t)
i ], where min is the

frequency to be imitated and C(i) ∈ [0, 1] is a real
number that describes the fitness of agent i to imitate
or tune up. Intuitively, an agent with good imitation
skills will initially perform close to T , so for simplicity

we define C(i) = 1−
|f

(0)
i

−T |

T
.

This process is then run in parallel and iterated in
time. The relevant observable of the system is again the
perceived pitch f̄(t) which is now a function of time and
will change as the frequencies variance σ2(t) is modified.
If imitation is null C(i) = 0, then this model reduces to
the non-interacting case above. At the other extreme,
if every agent has perfect imitation skills C(i) = 1,
then there is an absorbing state where all the agents
end up vibrating at the same characteristic frequency

f∗
i that corresponds to the one for which |f

(0)
i − T | is

minimized. That is to say, amongst the initial values of
the partials, the one closest to T percolates and emerges
as a consensus. In this ideal situation, it is easy to see
that as N → ∞, f̄(∞) → T . In the more realistic case



5

of bounded capacity C(i) ∈ (0, 1), the absorbing state

will be such that ξ
(∞)
i will not just have one value but

several (corresponding to several degrees of intonation).
However what is straightforwardly guaranteed is that
the variance of the frequencies distribution σ2 will
decrease over time with respect to the initial condition
(non-interacting case). That is to say, the second term is
eq.2 will be smaller as interactions take place, boosting
even further the wisdom of crowds effect. These tenden-
cies are confirmed by numerical simulations in figure 3.
As a final comment, note that in the event that the
crowd is the audience of a concert which follows the
band’s lead singer (i.e. the system is coupled to an
external ’pitch field’), then the imitation process directly
takes place with the singer, instead of locally. This
mechanism trivially uncouples the system and reduces
the problem to the original non-interacting case, albeit
with a new σ which is much smaller than in the original
case.

To conclude, we have given a simple explanation for
the onset of collective intelligence in crowds that sing
at unison. Within reasonable limits, regardless the
intonation of each singer the collective tone will be
perceived as to be in tune. This wisdom of crowds effect
is further boosted if one allows individuals to adjust their
frequency by any degree of imperfect imitation with his
neighbors, although this additional mechanism is not
required for the collective effect to emerge in the first
place. Interestingly, this result does not require subjects
to follow any leader, and emerges in a self-organized way
due to the psychoacoustic properties of the perceived
pitch.
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FIG. 4: Numerical evaluation eq.1 for N = 102 frequencies
fi ∼ N (T = 1000, σ2). For σ ≪ T , there are few solutions
that consist of T and its subharmonics. As σ increases, other
solutions start to appear, and f̄ = T eventually disappears.
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FIG. 5: Numerical evaluation of the roots of equation 1, where
frequencies fi ∼ N (1000, 50) for N = 10, 102 and 103 respec-
tively. As N increases, just a few frequencies (and subhar-
monics) emerge as the numerical solutions.


