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Abstract. We propose a method to measure real-valued time series irreversibility which combines two 
different tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps 
a time series to a directed network according to a geometric criterion. The degree of irreversibility of 
the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the 
in and out degree distributions of the associated graph. The method is computationally efficient and 
does not require any ad hoc symbolization process. We find that the method correctly distinguishes 
between reversible and irreversible stationary time series, including analytical and numerical studies of 
its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) 
irreversible stochastic processes (a discrete flashing ratchet in an asymmetric potential), (iii) reversible 
(conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence 
of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as 
the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a 
benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution 
has to be considered to identify the irreversible nature of the series. 

1 Introduction 

A stat ionary process X(t) is said to be statistically time 
reversible (hereafter time reversible) if for every N, the se­
ries { X ( t i ) , . . . , X(tN)} and {X(tN),..., X(* i )} have the 
same joint probability distributions [1]. This means tha t a 
reversible time series and its time reversed are, statistically 
speaking, equally probable. Reversible processes include 
the family of Gaussian linear processes (as well as Fourier-
transform surrogates and nonlinear static transformations 
of them), and are associated with processes at thermal 
equilibrium in statistical physics. Conversely, time series 
irreversibility is indicative of the presence of nonlineari-
ties in the underlying dynamics, including non-Gaussian 
stochastic processes and dissipative chaos, and are associ­
ated with systems driven out-of-equilibrium in the realm 
of thermodynamics [2,3]. Time series irreversibility is an 
important topic in basic and applied science. From a phys­
ical perspective, and based on the relation between sta­
tistical reversibility and physical dissipation [2,3], recent 
work uses the concept of time series irreversibility to derive 
information about the entropy production of the physical 
mechanism generating the series, even if one ignores any 
detail of such mechanism [4,5]. In a more applied con­
text, it has been suggested tha t irreversibility in complex 
physiological series decreases with aging or pathology, be­
ing maximal in young and healthy subjects [6-8], render-
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ing this feature important for noninvasive diagnosis. As 
complex signals pervade natural and social sciences, the 
topic of time series reversibility is indeed relevant for sci­
entists aiming to understand and model the dynamics be­
hind complex signals. 

The definition of time series reversibility is formal and 
therefore there is not an a priori optimal algorithm to 
quantify it in practice. Recently, several methods to mea­
sure time irreversibility have been proposed [6,7,9-15], 
The majority of them perform a time series symboliza­
tion, typically making an empirical parti t ion of the data 
range [9] (note tha t such a transformation does not al­
ter the reversible character of the output series [10]) and 
subsequently analyze the symbolized series, through sta­
tistical comparison of symbol strings occurrence in the 
forward and backwards series or using compression algo­
ri thms [5,10,16]. The first step requires an extra amount 
of ad hoc information (such as range parti t ioning or size 
of the symbol alphabet) and therefore the output of these 
methods eventually depend on these extra parameters . A 
second issue is tha t since typical symbolization is local, the 
presence of multiple scales (a signature of complex signals) 
could be swept away by this coarse-graining: in this sense 
multi-scale algorithms have been proposed recently [7,8], 

Motivated by these facts, here we explore the useful­
ness of the horizontal visibility algorithm in such context. 
This is a time series analysis method which was proposed 
recently [17]. It makes use of graph theoretical concepts. 
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and it is based on the mapping of a time series to a graph 
and the subsequent analysis of the associated graph prop­
erties [17-20]. Here we propose a time directed version of 
the horizontal visibility algorithm, and we show tha t it is 
a simple and well defined tool for measuring time series 
irreversibility. More precisely, we show tha t the Kullback-
Leibler divergence [16] between the out and in degree dis­
tributions, D[Pout(k)\\Pin(k)], is a simple measure of the 
irreversibility of real-valued stat ionary stochastic series. 
Analytical and numerical results support our claims, and 
the presentation is as follows: the method is introduced 
in Section 2. In Section 3 we analyze reversible t ime se­
ries generated from linear stochastic processes, which yield 
D[Pout(k) | |-Pin(k)] = 0. As a further validation, in Sec­
tion 4 we report the results obtained for irreversible se­
ries. We first analyze a thermodynamic system (a discrete 
flashing ratchet) which shows time irreversibility when 
driven out of equilibrium. Its amount of irreversibility can 
be increased continuously tuning the value of a parameter 
of the system, and we find tha t the method can, not only 
distinguish, but also quantify the degree of irreversibility. 
We also s tudy the effect of applying a stalling force in the 
opposite direction of the net current of particles in the 
ratchet. In this case the benchmark measure fails predict­
ing reversibility whereas a generalized measure based on 
degree-degree distributions D[Pout(k,k')\\Pin(k,k')] goes 
beyond the phenomenon associated to physical currents 
and still detects irreversibility. We extend this analysis to 
chaotic signals, where our method distinguishes between 
dissipative and conservative chaos, and we analyze chaotic 
signals polluted with noise. Finally, a discussion is pre­
sented in Section 5. 

2 The method 

2.1 The horizontal visibility graph 

The family of visibility algorithms is a collection of meth­
ods tha t map series to networks according to specific geo­
metric criteria [17,18]. The general purpose of such meth­
ods is to accurately map the information stored in a time 
series into an alternative mathematical structure, so that 
the powerful tools of graph theory may eventually be em­
ployed to characterize t ime series from a different view­
point, bridging the gap between nonlinear time series anal­
ysis, dynamical systems, and graph theory [19,21-24], 

We focus here on a specific subclass called horizontal 
visibility algorithm, firstly proposed in [17], and defined 
as follows: let {xt}t=i,...,N be a real-valued time series of 
N data . The algorithm assigns each da tum of the series 
to a node in the horizontal visibility graph (HVg). Then, 
two nodes i and j in the graph are connected if one can 
draw a horizontal line in the time series joining Xj and 
Xj tha t does not intersect any intermediate da ta height 
(see Fig. 1). Hence, i and j are two connected nodes if the 
following geometrical criterion is fulfilled within the time 
series: 

x i, Xj > xn, V n | i < n < j . (1) 
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Fig. 1. Graphical illustration of the method. In the top we 
plot a sample time series {x(t)}. Each datum in the series is 
mapped to a node in the graph. Arrows, describing allowed 
directed visibility, link nodes. The associated directed horizon­
tal visibility graph is plotted below. In this graph, each node 
has an ingoing degree k[n, which accounts for the number of 
links with past nodes, and an outgoing degree fcout, which in 
turn accounts for the number of links with future nodes. The 
asymmetry of the resulting graph can be captured in a first 
approximation through the invariance of the outgoing (or in­
going) degree series under time reversal. 

Some results regarding the characterization of stochastic 
and chaotic series through this method have been put 
forward recently [17,20], and the first steps for a math­
ematically sound characterization of horizontal visibility 
graphs have been established [25]. Interestingly, a very re­
cent work suggests tha t the method can be used in practice 
to characterize not only time series but generic nonlinear 
discrete dynamical systems, sharing similarities with the 
theory of symbolic dynamics [21], 

2.2 Directed HVg 

So far in the li terature the family of visibility graphs are 
undirected, as visibility did not have a predefined tempo­
ral arrow. However, as conjectured in a previous work [18], 
such a directionality can be made explicit by making use 
of directed networks or digraphs [26]. We address such 
directed version, defining a Directed Horizontal Visibility 
graph (DHVg) clS 9. HVg, where the degree k(t) of the 
node t is now split in an ingoing degree k[n(t), and an 
outgoing degree, such tha t k(t) = k[n(t) + kout(t). The in­
going degree k(t) is defined as the number of links of node 
t with other past nodes associated with da ta in the series 
(that is, nodes with t' < t). Conversely, the outgoing de­
gree kout(t), is defined as the number of links with future 
nodes. 

For a graphical illustration of the method, see Fig­
ure 1. The degree distribution of a graph describes the 
probability of an arbi trary node to have degree k (i.e. 
k links) [26]. We define the in and out (or ingoing and 
outgoing) degree distributions of a DHVg as the proba­
bility distributions of kout and k-m of the graph which we 
call Pout(k) = P(kout = k) and Pm{k) = P(kin = k), 
respectively. 



2.3 Quantifying irreversibility: DHVg 
and Kullback-Leibler divergence 

The main conjecture of this work is that the information 
stored in the in and out distributions takes into account 
the amount of time irreversibility of the associated se­
ries. More precisely we claim that this can be measured, 
in a first approximation, as the distance (in a distribu­
tional sense) between the in and out degree distributions 
(Pin(k) and Pout(k)). If needed, higher order measures 
can be used, such as the corresponding distance between 
the in and out degree-degree distributions (Pin(k, k') and 
Pout(k, k')). These are defined as the in and out joint de­
gree distributions of a node and its first neighbors [26], de­
scribing the probability of an arbitrary node whose neigh­
bor has degree k' to have degree k. 

We make use of the Kullback-Leibler divergence [16] as 
the distance between the in and out degree distributions. 
Relative entropy or Kullback-Leibler divergence (KLD) is 
introduced in information theory as a measure to distin­
guish between two probability distributions. Given a ran­
dom variable x and two probability distributions p(x) and 
q(x), KLD between p and q is defined as follows: 

D{p\\q) = Y^P(^Og^\, (2) 
xex q[x) 

which vanishes if and only if both probability distribu­
tions are equal p = q and it is bigger than zero otherwise. 
Unlike other measures used to estimate time irreversibil­
ity [6,9,10,13], the KLD is statistically significant, as it is 
proved by the Chernoff-Stein lemma: the probability of in­
correctly guessing (via hypothesis testing) that a sequence 
of n data is distributed as p when the true distribution is 
q tends to e~nD^q'> when n —> oo. The KLD is then re­
lated to the probability to fail when doing an hypothesis 
test, or equivalently, it is a measure of "distinguishabil-
ity": the more distinguishable are p and q with respect to 
each other, the larger is D(p\\q). 

In statistical mechanics, the KLD can be used to mea­
sure the time irreversibility of data produced by nonequi-
librium processes but also to estimate the average en­
tropy production of the physical process that generated 
the data [2,4,12,27,28]. Irreversibility can be assessed by 
the KLD between probability distributions associated to 
observables in the process and in its time reversal. These 
measure gives lower bounds to the entropy production, 
whose accuracy increases as the observables contain a 
more detailed description of the system. The measure that 
we present in this work has this limitation: it takes the in­
formation from the degree, which is a partial description 
of the process. Consequently, our technique does not give 
a tight bound to the entropy production. 

Nevertheless, as we will show in several examples, 
the information of the outgoing degree distribution kout 

is sufficient to distinguish between reversible and irre­
versible stochastic stationary series which are real-valued 
but discrete in time {xt}t=i,...,N- We compare the out­
going degree distribution in the actual (forward) series 
Pkmt(k\{x(t)}t=i,...,N) = Pout(k) with the corresponding 

probability in the time-reversed (or backward) time series, 
which is equal to the probability distribution of the ingo­
ing degree in the actual process Pkout(k\{x(t)}t=N,...,i) = 
Pin(k). The KLD between these two distributions is 

D[Pout(k)\\PM] = Y;Pout(k)log?^. (3) 
k ^m(K) 

This measure vanishes if and only if the outgoing and in­
going degree probability distributions of a time series are 
identical, Pout(k) = P[n(k), and it is positive otherwise. 
We will apply it to several examples as a measure of irre­
versibility. 

Notice that the majority of previous methods to esti­
mate time series irreversibility generally proceed by first 
making a (somewhat ad hoc) local symbolization of the 
series, coarse-graining each of the series data into a sym­
bol (typically, an integer) from an ordered set. Then, they 
subsequently perform a statistical analysis of word occur­
rences (where a word of length n is simply a concatenation 
of n symbols) from the forward and backwards symbolized 
series [14,15]. Time series irreversibility is therefore linked 
to the difference between the word statistics of the for­
ward and backwards symbolized series. The method pre­
sented here can also be considered as a symbolization if 
we restrict ourselves to the information stored in the series 
{k0ut(t)}t=i,...,N a n ( i {kin(t)}t=ii...iN (note that the net­
work has indeed more structure than the degree series). 
However, at odds with other methods, here the symboliza­
tion process (i) lacks ad hoc parameters (such as number 
of symbols in the set or partition definition), and (ii) in 
principle, it takes into account global information: each 
coarse-graining xt —> (hn(t), kout(t)) is performed using 
information from the whole series, according to the map­
ping criterion (1). Hence, this symbolization may in prin­
ciple take into account multiple scales, which is desirable 
if we want to tackle complex signals [7,8], 

3 Reversibility 

3.1 Uncorrelated stochastic series 

For illustrative purposes, in Figure 2 we have plotted the 
in and out degree distributions of the visibility graph as­
sociated to an uncorrelated random series {xt}t=i,...,N of 
size N = 106: the distributions cannot be distinguished 
and KLD vanishes (the numerical value of KLD is shown 
in Tab. 1) which is indicative of a reversible series. In 
what follows we provide an exact derivation of the associ­
ated outgoing and ingoing degree distributions associated 
to this specific process, showing that they are indeed iden­
tical in the limit of infinite size series. 

Theorem 1. Let {xt}t=—oo,...,oo be a bi-infinite sequence 
of independent and identically distributed random vari­
ables extracted from a continuous probability density f(x). 
Then, both the in and out degree distributions of its asso­
ciated directed horizontal visibility graph are 

Pin(k) = Pout(k) = (^j , * = 1, 2, 3 , . . . (4) 



Fig. 2. Top: a sample uncorrelated random time series 
(500 data points) extracted from a uniform distribution U[0,1], 
Bottom: the in and out degree distributions of the DHVg as­
sociated to the random series of 106 data points. The process 
is reversible and the graph degree distributions are, besides fi­
nite size effects, equivalent. The deviation is measured through 
their KLD (see Tab. 1). Note that for computing the KLD, in 
all numerical simulations we have assumed OlogO = 0 [5], 

Proof (out-distribution). Let x be an arbi trary da tum of 
the aforementioned series. The probability tha t the hori­
zontal visibility of x is interrupted by a da tum xr on its 
right is independent of f(x). 

$1 = 

OO / *OC 

f (x) f (xr)dxrdx 

f(x)[l-F(x)]d,x=1-, 

where F(x) = f_ f(x')dx'. 

The probability P(k) of the da tum x being capable of 
exactly seeing k da ta may be expressed as 

P{k) = Q{k)^ =-Q{k), (5) 

where Q(k) is the probability of x seeing at least k data. 
Q(k) may be recurrently calculated via 

Q(k) = Q(k-l)(l-$1) = ±Q(k-l), (6) 

from which, with Q ( l ) = 1, the following expression is 
obtained 

Q(k) 
fc-i 

(7) 

which together with equation (5) concludes the proof. An 
analogous derivation holds for the in case. 

Fig. 3. Log-log plot of -D[Pout(fc)||-Pin(fc)] of the graph asso­
ciated to an Ornstein-Uhlenbeck process as a function of the 
series size N (dots are the result of an ensemble average over 
several realizations). Note that KLD decreases with series size 
and tends to zero asymptotically. 

Note tha t this result is independent of the underlying 
probability density / ( # ) : it holds not only for Gaussian 
or uniformly distributed random series, but for any series 
of independent and identically distributed (i.i.d.) random 
variables extracted from a continuous distribution / ( # ) . A 
trivial corollary of this theorem is tha t the KLD between 
the in and out degree distributions associated to a random 
uncorrelated process tends asymptotically to zero with the 
series size, which correctly suggests tha t the series is time 
reversible. 

3.2 Correlated stochastic series 

In the last section we considered uncorrelated stochas­
tic series which are our first example of a reversible se­
ries with D[Pout(k) | |-Pin(k)] = 0. As a further validation, 
here we focus on linearly correlated stochastic processes 
as additional examples of reversible dynamics [1]. We use 
the minimal subtraction procedure [20] to generate such 
correlated series (details are depicted in an appendix). 
This method is a modification of the s tandard Fourier fil­
tering method, which consists in filtering a series of un­
correlated random numbers in Fourier space. We study 
time series whose correlation is exponentially decaying 
C(t) ~ exp(— t/r) (akin to an Ornstein-Uhlenbeck pro­
cess) and power law decaying C(t) ~ t r. In Table 1 
we show tha t the KLD of these series (for T = 1.0 and 
7 = 2.0) are all very close to zero, and its deviation from 
zero is originated by finite size effects, as it is shown in 
Figure 3. 
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Fig. 4. Discrete flashing ratchet scheme. Particles are at tem­
perature T moving in a periodic linear asymmetric potential of 
height 2V. The potential is switched on and off at a constant 
rate r, which originates a net current of particles to the left. If 
the potential is ON, the state of the potential is represented by 
its position x = {0,1, 2}, and if it is OFF by x + 3 = {3,4, 5}. 

4 Irreversibility 

4.1 Discrete flashing ratchet 

We now study a thermodynamic system which can be 
smoothly driven out of equilibrium by modifying the value 
of a physical parameter. We make use of the time series 
generated by a discrete flashing ratchet model introduced 
in [4]. The ratchet consists of a particle moving in a one 
dimensional lattice. The particle is at temperature T and 
moves in a periodic asymmetric potential of height 'IV, 
which is switched on and off at a ra te r (see Fig. 4 for 
details). The switching rate is independent of the posi­
tion of the particle, breaking detailed balance [4,5]. Hence, 
switching the potential drives the system out of equilib­
rium resulting in a directed motion or net current of par­
ticles. When using full information of the process, tra­
jectories of the system are described by two variables: 
the position of the particle x = {0 ,1 ,2} and the state 
of the potential, y = {ON, O F F } . The time series are con­
structed from x and y variables as follows: (x, y) = x if 
y = ON and (x, y) = x + 3 if y = O F F . 

The dynamics of the system is described by a six-
state Markov chain with transition probabilities Pi-^j = 
Ti^jj J2- r^j, where P%^j is the transition rate from 
i to j and the sum J2,- runs over the accessible states 
from i (see Fig. 4). All transition rates satisfy the de­
tailed balance condition with respect to the thermal ba th 
at temperature T, except the switches between ON and 
OFF. When the potential is on, i,j = {0 ,1 ,2} and 
f U j = exp[-(Vj - Vi)/kT]. When it is off, i,j = {3, 4, 5} 
and l i - f j = 1. On the other hand, switches are imple­
mented with rates tha t do not depend on the position of 
the particle and therefore do not satisfy detail balance 
condition [5]: 1 ^ + 3 = r i + 3 ^ j = r, for i = {0 ,1 , 2} 1 . 

1 Note that in this concrete subsection the series under study 
are discrete, and in this sense the lack of synibolization that 
our approach provides is not relevant in this case. However it 
should be stressed that this in this subsection the aspect under 
study is not the absence of synibolization, but the degree up 
to which the method can not only distinguish but quantify 

V/kT 

Fig. 5. D[P0ut(fc)||Pm(fc)] and D[Pout(k,k')\\Pin(k,k')] for a 
discrete flashing ratchet (r = 1) as a function of V/kT. For 
each value of V we generate a stationary time series of TV = 
fO6 steps described with full information (position and state 
of the potential). The system is in equilibrium for V = 0, and 
it is driven out of equilibrium for V > 0. 

In Figure 5 we depict the values of D[Pout(k)\\Pin(k)} 
and D[Pout(k,k')\\Pin(k,k')] as a function of V/kT, for 
6-state time series of 2 1 9 data . Note tha t for V = 0 de­
tailed balance condition is satisfied, the system is in equi­
librium and trajectories are statistically reversible. In this 
case both KLD using degree distributions and degree-
degree distributions vanish. On the other hand, if V is 
increased, the system is driven out of equilibrium, what 
introduces a net statistical irreversibility which increases 
with V [4]. The amount of irreversibility estimated with 
KLD increases with V for both measures, therefore the 
results produced by the method are qualitatively correct. 
Interestingly enough, the tendency holds even for high val­
ues of the potential, where the statistics are poor and the 
KLD of sequences of symbols usually fail when estimating 
irreversibility [4]. However the values of the KLD tha t we 
find are far below the KLD per step between the forward 
and backward trajectories, which is equal to the dissipa­
tion as reported in [4]. The degree distributions capture 
the irreversibility of the original series but it is difficult to 
establish a quanti tat ive relationship between (3) and the 
KLD between trajectories. 

On the other hand, the measure based on the degree-
degree distribution D[Pout(k, k')\\Pin(k, k')] takes into ac­
count more information of the visibility graph struc­
ture than the KLD using degree distributions, providing 
a closer bound to the physical dissipation as it is ex­
pected by the chain rule [16], D[Pout(k, k')\\Pin(k, k')] > 
D[P0ut(k)\\Pin(k)]. The improvement is significant in some 

the amount of irreversibility, something that can be analyzed 
within this model, where the amount of irreversibility can be 
fine tuned. 
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Fig. 6. Irreversibility measures P[Pout(fc)||Pin(fc)] and 
D[Pout(fc,fc')||Pin(fc,fc')] in the flashing ratchet (r = 2, V = 
2kT) as a function of FL/kT. Here, F is the applied force and 
L is the spatial period of the ratchet, which in this case is equal 
to 1. For each value of the force, we make use of a single sta­
tionary series of size N = 106 containing partial information 
(the state information is removed). 

situations. Consider for instance the flashing ratchet with 
a force opposite to the net current on the system [4], 
The current vanishes for a given value of the force usu­
ally termed as stalling force. When the force reaches this 
value, the system is still out of equilibrium (V > 0) and it 
is therefore time irreversible, but no current of particles is 
observed if we describe the dynamics of the ratchet only 
with partial information ( that is, if the series under s tudy 
are generated by the successive positions of the particle 
x = { 0 , l , 2 } ) . 

In Figure 6 we address this situation, evaluating our 
method for series with only partial information. We show 
how D [Pout (k) 11P;n (k)] tends to zero when the force ap­
proaches to the stalling value (situation with null net cur­
rent). Therefore, our measure of irreversibility (3) fails in 
this do other KLD estimators based on local flows 
or currents [4]. However, D[Pout(k, k')\\Pin(k, k')] captures 
the irreversibility of the t ime series, and yields a posi­
tive value at the stalling force (note tha t when addressing 
higher order statistics, convergence of KLD values with 
system size is slower [5]). 

4.2 Chaotic series 

We have applied our method to several chaotic series and 
found tha t it is able to distinguish between dissipative and 
conservative chaotic systems. Dissipative chaotic systems 
are those tha t do not preserve the volume of the phase 
space, and they produce irreversible time series. This is 
the case of chaotic maps in which entropy production via 
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Fig. 7. Top: a sample chaotic time series (500 data points) 
extracted from a fully chaotic Logistic map xt+i = Axt{l — 
xt). Bottom: the in and out degree distributions of the DHVg 
associated to the chaotic series of 106 data points. The process 
is irreversible and the graph degree distributions are clearly 
different. The deviation is measured through the KLD, which 
is positive in this case (see Tab. 1). 

instabilities in the forward time direction is quantitatively 
different to the amount of past information lost. In other 
words, those whose positive Lyapunov exponents, which 
characterize chaos in the forward process, differ in magni­
tude with negative ones, which characterize chaos in the 
backward process [10]. In this section we analyze several 
chaotic maps and estimate the degree of reversibility of 
their associated time series using our measure, showing 
that for dissipative chaotic series it is positive while it 
vanishes for an example of conservative chaos. 

4.2.1 The logistic map at /x 
derivations 

4 is irreversible: analytical 

For illustrative purposes, in Figure 7 we have plotted the 
in and out degree distributions of the DHVg associated 
to a paradigmatic dissipative chaotic system: the Logistic 
map at /J, = 4. There is a clear distinction between both 
distributions, as it is quantified by the KLD, which in this 
case is positive both for degree and degree-degree cases 
(see Tab. 1). Furthermore, in Figure 8 we make a finite size 
analysis in this particular case, showing tha t our measure 
quickly converges to an asymptotic value which clearly 
deviates from zero, at odds with reversible processes. 

Recall tha t in Section 3 we proved analytically that 
for a random uncorrelated process D[Pout(k)\|P;n(k)] = 0, 
since P[n(k) = P0ut(k). Proving a similar result for a 
generic irreversible process is a major challenge, since 



Table 1. Values of the irreversibility measure associated to the degree distribution -D [Pout (fc)||-Pin (fc)] and the degree-degree 
distribution _D[Pout(fc, fc')||Pin(fc, fc')] respectively, for the visibility graphs associated to series of 106 data generated from re­
versible and irreversible processes. In every case chain rule is satisfied, since _D[Pout(fc, fc')||Pin(fc, fc')] > P[Pout(fc)||Pin(fc)]. Note 
that that the method correctly distinguishes between reversible and irreversible processes, as KLD vanishes for the former and 
it is positive for the latter. 

Series description D[Pout(k)\\Pin(k)] £>[Pout(fc,fc')||Pin(fc,fc')] 
Reversible stochastic processes 

U[0,1] uncorrelated 
Ornstein-Uhlenbeck (r = 1.0) 

Long-range (power law) correlated 
stationary process (7 = 2.0) 

Dissipative chaos 
Logistic map (/K = 4) 

a map (a = 3) 
a map (a = 4) 

Henon map (a = 1.4, b = 0.3) 
Lozi map 

Kaplan Yorke map 

3.88 x 10~6 

7.82 x 10~6 

1.28 x 10~5 

0.377 
0.455 
0.522 
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Fig. 8. Semi-log plot of P[Pout(fc)||Pin(fc)] of the graph asso­
ciated to a fully chaotic Logistic map xt+i = 4xt(l — xt), as a 
function of the series size N (dots are the result of an ensemble 
average over different realizations). Our irreversibility measure 
converges with series size to an asymptotical nonzero value. 

finding out exact results for the entire degree distribu­
tions is in general difficult [20]. However, note tha t the 
KLD between two distributions is zero if and only if the 
distributions are the same in the entire support . Therefore, 
if we want to prove tha t this measure is strictly positive, 
it is sufficient to find tha t P;n(fc) 7̂  Pout(fc) for some value 
of the degree k. Here we take advantage of this fact to pro­
vide a rather general recipe to prove tha t a chaotic system 
is irreversible. 

Consider a time series {xt}t=i,...,N with a joint prob­
ability distribution / ( x i , X 2 , . . . ,XJV) and support (a, b). 
and denote xt-i,xt,xt+i three (ordered) generic da ta of 

the series. By construction. 

Pout(k = 1) = P(xt <xt+i) 
fb fb 

= I dxt dxt+if{xt,xt+i), 
•J a J xt 

Pin(k = 1) = P ( x t _ i > xt) 
,-b ,-b 

dxt-i / dxtf(xt-i,xt). (8) 
J a 

The probability tha t fcout = 1 (fc;n = 1) is actually the 
probability tha t the series increases (decreases) in one 
step. This probability is independent of time, because we 
consider stat ionary series. If the chaotic map is of the form 
xt+i = F(xt), it is Markovian, and the preceding equa­
tions simplify: 

fb pb 

Pout(k=l)= dxt dxt+if(xt)f(xt+i\xt): 

J a J xt 
fb rb 

Pin(k=l)= dxt dxt-if(xt-i)f(xt\xt-i). (9) 
•J a J Xt 

For chaotic dynamical systems whose trajectories are in 
the at tractor, there exists an invariant probability mea­
sure tha t characterizes the long-term fraction of time 
spent by the system in the various regions of the at tractor. 
In the case of the Logistic map 

F(xt) = fj,xt(l -xt) (10) 

with parameter /x = 4, the a t t ractor is the whole interval 
[0,1] and the probability measure / ( # ) corresponds to 

f(x) = p(x) = 
1 

7Ty^x(l — x) 
(11) 

Now, for a deterministic system, the transition probability 
is simply 

f(xt+i\xt) = S(xt+i - F(xt)): (12) 



where S(x) is the Dirac delta distribution. Equations (9) 
for the Logistic map with /x = 4 and x G [0,1] read 

Pout(k = l)= dxt dxt+if(xt)S(xt+i - F{xt)), 
Jo Jxt 

Pin(k = l) = dxt dxt-if(xt-i)S(xt - F(xt-i)). 
•JO Jxt 

(13) 

Notice that , using the properties of the Dirac delta dis­
tribution, J S(xt+i — F(xt))dxt+i is equal to one iff 
F(xt) G [x(, 1], what happens iff 0 < xt < 3/4, and it 
is zero otherwise. Therefore the only effect of this integral 
is to restrict the integration range of xt to be [0, 3/4]. The 
first equation in (13) reduces to 

,3/4 
Pout(k=l)= / dxtf(xt) = 2/3. 

Jo 
(14) 

On the other hand. 

dxt-if{xt-i)S{xt - F ( x t _ i ) ) = 

] T f{xl)/\F'{xl)\, (15) 
xl\F(xl) = xt 

tha t is, the sum over the roots x* of the equation F(x) = 
xt, iff F(xt-\) > XQ. But since xt-\ G [xt, 1] in the latter 
integral, it is easy to see tha t again, this is verified iff 
0 < xt < 3/4 (as a mat ter of fact, if 0 < xt < 3/4 there is 
always a single value of xt-\ G [xt, 1] such tha t F(xt-i) = 
xt, so the sum restricts to the adequate root) . It is easy 
to see tha t the particular value is x* = (1 + A/1 — xt)/2. 
Making use of these piecewise solutions and equation (11), 
we finally have 

Pin(k = 1) = 
3/4 

dxt / « 
4 A/1 -xt 

= 1/3. 

We conclude tha t Pout(k) ^ P[n(k) for the Logistic map 
and hence the KLD measure based on degree distribu­
tions is positive. Recall tha t Pout(k = 1) = 2 /3 is the 
probability tha t the series exhibits a positive j ump (xt > 
x t - i ) once in the at t ractor . These positive jumps must be 
smaller in size than the negative jumps because, once in 
the at tractor, (xt) is constant. The irreversibility captured 
by the difference between Pout(k = 1) and P[n(k = 1) is 
then the asymmetry of the probability distribution of the 
slope xt — xt-\ of the original time series. The KLD of the 
degree distributions given by (3) clearly goes beyond this 
simple signature of irreversibility and can capture more 
complex and long-range trai ts . 

4.2.2 Other chaotic maps 

For completeness, we consider other examples of dissipa-
tive chaotic systems analyzed in [29]: 

(1) the a-map: xt+i = 1 — \2xt — l\a, which reduces to the 
Logistic and tent maps in their fully chaotic region for 

Fig. 9. Top: a sample chaotic time series (500 data points) 
extracted from the (chaotic and conservative) Arnold cat map. 
Bottom: the in and out degree distributions of the DHVg asso­
ciated to the chaotic series of 106 data points. Albeit chaotic, 
the process is reversible (see the text) and the and the graph 
degree distributions are, besides finite size effects, equivalent. 
The deviation is measured through their KLD (see Tab. 1). 

a = 2 and a = 1 respectively. We analyze this map for 
a = 3, 4; 

(2) the 2D Henon map: xt^\ = 1 + yt — ax\, yt+i = bxt, 
in the fully chaotic region (a = 1.4, b = 0.3): 

(3) the Lozi map: a piecewise-linear variant of the Henon 
map given by xt+i = l + yn- a\xt\, yt+i = bxt in the 
chaotic regime (a = 1.7 and b = 0.5): 

(4) the Kaplan-Yorke map: xt+i = 2xt m o d ( l ) , y t + i = 
Xyt +cos(47rx t) mod( l ) . 

We generate s tat ionary time series with these maps and 
take da ta once the system is in the corresponding at t rac­
tor. In Table 1 we show the value of the KLD between 
the in and out degree and degree-degree distributions for 
these series. In every case, we find an asymptotic posi­
tive value, in agreement with the conjecture tha t dissi-
pative chaos is indeed time irreversible. Finally, we also 
consider the Arnold cat map: xt+i = xt + yt mod( l ) , 
yt+i =xt + 2yt m o d ( l ) . 

At odds with previous dissipative maps, this is an ex­
ample of a conservative (measure-preserving) chaotic sys­
tem with integer Kaplan-Yorke dimension [29]. The map 
has two Lyapunov exponents which coincide in magni­
tude Ai = ln(3 + A / 5 ) / 2 = 0.9624 and A2 = ln(3 -
A / 5 ) / 2 = —0.9624. This implies tha t the amount of in­
formation created in the forward process (Ai) is equal 
to the amount of information created in the backwards 
process (—A2), therefore the process is time reversible. 
In Figure 9 we show a sample series generated by the 
Arnold cat map, and the in and out degree distributions 



D 

Fig. 10. Log-log plot of D[Pout(k)\\Pin(k)] of the graph asso­
ciated to the Arnold cat map as a function of the series size TV 
(dots are the result of an ensemble average over different real­
izations). Note that the irreversibility measure decreases with 
series size, and asymptotically tends to zero, which suggests 
that this chaotic map is reversible. 

of its associated DHVg, for a time series of 106 da ta (their 
KLD is depicted in Tab. 1), and in Figure 10 we show that 
D[Pout (k) | |-Pin (k)] asymptotically tends to zero with series 
size, and the same happens with the degree-degree distri­
butions (see Tab. 1). This correctly suggests tha t albeit 
chaotic, the map is statistically t ime reversible. 

4.3 Irreversible chaotic series polluted with noise 

Standard t ime series analysis methods evidence problems 
when noise is present in chaotic series. Even a small 
amount of noise can destroy the fractal s tructure of a 
chaotic a t t ractor and mislead the calculation of chaos indi­
cators such as the correlation dimension or the Lyapunov 
exponents [30]. In order to check if our method is robust, 
we add an amount of white noise (measurement noise) 
to a signal extracted from a fully chaotic Logistic map 
(/x = 4.0). In Figure 11 we plot D[Pout(k)\\Pin(k)} of its 
associated visibility graph as a function of the noise am­
plitude (the value corresponding to a pure random signal 
is also plotted for comparison). The KLD of the signal 
polluted with noise is significantly greater than zero, as it 
exceeds the one associated to the noise in four orders of 
magnitude, even when the noise reaches the 100% of the 
signal amplitude. Therefore our method correctly predicts 
that the signal is irreversible even when adding noise. 

5 Discussion 

In this paper we have introduced a new method to mea­
sure t ime irreversibility of real valued stat ionary stochas­
tic time series. The algorithm proceeds by mapping the 
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Fig. 11 . Semi-log plot of D[Pout(fc)||Pin(fc)] of the graph as­
sociated to series of 106 data extracted from a fully chaotic 
Logistic map xt+i = 4xt(l — xt) polluted with extrinsic white 
uniform noise U[—0.5, 0.5], as a function of the noise ampli­
tude. The corresponding KLD value of a uniform series is plot­
ted for comparison, which is five orders of magnitude smaller 
even when the chaotic signal is polluted with an amount of 
noise of the same amplitude. This suggests that our measure 
is robust against noise. 

series into an alternative representation, the directed hor­
izontal visibility graph. We have shown tha t the Kullback-
Leibler divergence (KLD) between the in and out degree 
distributions calculated on this graph is a measure of the 
irreversibility of the series. 

The method has been validated by studying both re­
versible (uncorrelated and linearly correlated stochastic 
processes as well as conservative chaotic maps) and ir­
reversible (out-of-equilibrium physical processes and dis-
sipative chaotic maps) series. The method not only dis­
criminates but also quantifies the amount of irreversibility 
present in the series, as shown in the case s tudy of the dis­
crete flashing ratchet. When the dissipative process hap­
pens to show null net current, higher-order statistics of 
the visibility graph (namely, the joint degree-degree dis­
tribution) need to be addressed to detect the irreversible 
character of the process. 

We have also shown tha t the method is robust against 
noise, in the sense tha t irreversible signals are well charac­
terized even when these signals are polluted with a signifi­
cant amount of (reversible) noise. While the results of our 
measure for reversible and irreversible dynamics quanti­
tatively differ in several orders of magnitude, a statistical 
test [11,31,32] can be easily built as follows: one first pro­
ceeds to shuffle the series under s tudy in order to generate 
a randomized resampled da ta set with the same underly­
ing probability density. This resampled series, whose ir­
reversibility measure is asymptotically null in the light of 
Theorem 1, is considered as the null hypothesis of the test. 

It is also worth emphasizing tha t it lacks an ad hoc 
symbolization process, and hence it can be applied directly 



to any kind of real-valued time series. While a detailed 
comparison of the performance of this approach to classi­
cal t ime series symbolization techniques is left for future 
investigation, the current results suggest tha t this tech­
nique can be of potential interest for several communities. 
This includes for instance biological sciences, where there 
is not such a simple tool to discriminate between time 
series generated by active (irreversible) and passive (re­
versible) processes. In further work this proposed measure 
will indeed be used to s tudy empirical da ta of such kind. 

Appendix: Generating correlated series 
through the minimal subtraction procedure 

In what follows we explain the method [20] we have used 
in Section 3 to generate series of correlated Gaussian ran­
dom numbers Xj of zero mean and correlation function 
(XJXJ) = C(\i — j \ ) . The classical method for generat­
ing such correlated series is the so-called Fourier filter­
ing method (FFM). This method proceeds by filtering the 
Fourier components of an uncorrelated sequence of ran­
dom numbers with a given filter (usually, a power-law 
function) in order to introduce correlations among the 
variables. However, the method presents the drawback of 
evidencing a finite cut-off in the range where the variables 
are actually correlated, rendering it useless in practical sit­
uations. An interesting improvement was introduced some 
years ago by Makse et al. [33] in order to remove such cut­
off. This improvement was based on the removal of the sin­
gularity of the power-law correlation function C(t) ~ t r 

at t = 0 and the associated aliasing effects by introducing 
a well defined one C(t) = (l+t2) '</2 and its Fourier trans­
form in continuous-time space. Accordingly, cut-off effects 
were removed and variables present the desired correla­
tions in their whole range. 

We use here an alternative modification of the FFM 
that also removes undesired cut-off effects for generic 
correlation functions and takes in consideration the dis­
crete nature of the series. Our modification is based on 
the fact tha t not every function C(t) can be consid­
ered to be the correlation function of a Gaussian field, 
since some mathematical requirements need to be ful­
filled, namely tha t the quadratic form JV • XjC(|i — j\)xj 
be positive definite. For instance, let us suppose tha t we 
want to represent da ta with a correlation function that 
behaves asymptotically as C(t) ~ t r. As this func­
tion diverges for t —> 0 a regularization is needed. If 
we take C(t) = (1 + t2) '</2, then the discrete Fourier 
transform S(k) = N1^2^2-1exp(ijj-)C(j) turns out to 
be negative for some values of k, which is not accept­
able. To overcome this problem, we introduce the mini­
mal subtraction procedure, defining a new spectral density 
as So(k) = S(k) — Smin(k), being Smin(k) the minimum 
value of S(k) and using this expression instead of the for­
mer one in the filtering step. The only effect tha t the min­
imal subtraction procedure has on the field correlations is 
that C(0) is no longer equal to 1 but adopts the minimal 

value required to make the previous quadrat ic form posi­
tive definite. The modified algorithm is thus the following: 

— generate a set {uj},j = 1,...,N, of independent 
Gaussian variables of zero mean and variance one, 
and compute the discrete Fourier transform of the se­
quence, {«fc}: 

— correlations are incorporated in the sequence by mul­
tiplying the new set by the desired spectral den­
sity S(k), having in mind tha t this density is re­
lated with the correlation function C(r) through 
s(k) = Y,rNl/2exP(irk)C(r). Make use of S0(k) = 
S(k) — Smin(k) (minimal subtraction procedure) rather 
than S(k) in this process. Concretely, the corre­
lated sequence in Fourier space xj. is given by xj. = 

N'/2s0(kyi2uk-
— calculate the inverse Fourier transform of xj. to obtain 

the Gaussian field Xj with the desired correlations. 
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