190 research outputs found

    Stretching Single Domain Proteins: Phase Diagram and Kinetics of Force-Induced Unfolding

    Full text link
    Single molecule force spectroscopy reveals unfolding of domains in titin upon stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a step-wise "quantized" manner. Unfolding dynamics depends sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value which is determined by the barrier to unfolding when f=0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.Comment: 12 pages, Latex, 6 ps figure

    Unfolding cross-linkers as rheology regulators in F-actin networks

    Full text link
    We report on the nonlinear mechanical properties of a statistically homogeneous, isotropic semiflexible network cross-linked by polymers containing numerous small unfolding domains, such as the ubiquitous F-actin cross-linker Filamin. We show that the inclusion of such proteins has a dramatic effect on the large strain behavior of the network. Beyond a strain threshold, which depends on network density, the unfolding of protein domains leads to bulk shear softening. Past this critical strain, the network spontaneously organizes itself so that an appreciable fraction of the Filamin cross-linkers are at the threshold of domain unfolding. We discuss via a simple mean-field model the cause of this network organization and suggest that it may be the source of power-law relaxation observed in in vitro and in intracellular microrheology experiments. We present data which fully justifies our model for a simplified network architecture.Comment: 11 pages, 4 figures. to appear in Physical Review

    Developing preference-based measures for diabetes: DHP-3D and DHP-5D

    Get PDF
    © 2017 Diabetes UK Aims: The aim of this study was to develop two diabetes-specific preference-based measures [the Diabetes Health Profile–3 Dimension (DHP-3D) and the Diabetes Health Profile–5 Dimension (DHP-5D)] for use in the calculation of Quality Adjusted Life Years, a key outcome in economic evaluation. These measures were based on the non-preference-based instrument the Diabetes Health Profile. Methods: For DHP-3D, psychometric and Rasch analyses were used to develop a health state classification system based on the Diabetes Health Profile–18 (DHP-18). The DHP-5D added two dimensions to the DHP-3D to extend the range of impacts measured. Each classification system was valued by 150 general public respondents in the United Kingdom using Time Trade Off (TTO). Multivariate regression was used to estimate utility value sets. The matched dimensions across each measure were compared using z-score tests. Results: The DHP-3D included three dimensions defined as mood, eating and social limitations, and the DHP-5D added dimensions defined as hypoglycaemic attacks and vitality. For both, the random effects generalized least squares regression model produced consistent value sets, with the DHP-3D and DHP-5D ranging from 0.983 (best state) to 0.717 (worst state), and 0.979 to 0.618 respectively. The addition of the two extra dimensions leads to significant differences for the more severe levels of each matched dimension. Conclusions: We have developed two diabetes-specific preference-based measures that, subject to psychometric assessment, can be used to provide condition-specific utility values to complement generic utilities from more widely validated measures such as the EuroQol-5 Dimension

    Induction of Ankrd1 in dilated cardiomyopathy correlates with the heart failure progression

    Get PDF
    Progression of idiopathic dilated cardiomyopathy (IDCM) is marked with extensive left ventricular remodeling whose clinical manifestations and molecular basis are poorly understood. We aimed to evaluate the clinical potential of titin ligands in monitoring progression of cardiac remodeling associated with end-stage IDCM. Expression patterns of 8 mechanoptotic machinery-associated titin ligands (ANKRD1, ANKRD2, TRIM63, TRIM55, NBR1, MLP, FHL2, and TCAP) were quantitated in endomyocardial biopsies from 25 patients with advanced IDCM. When comparing NYHA disease stages, elevated ANKRD1 expression levels marked transition from NYHA < IV to NYHA IV. ANKRD1 expression levels closely correlated with systolic strain depression and short E wave deceleration time, as determined by echocardiography. On molecular level, myocardial ANKRD1 and serum adiponectin correlated with low BAX/BCL-2 ratios, indicative of antiapoptotic tissue propensity observed during the worsening of heart failure. ANKRD1 is a potential marker for cardiac remodeling and disease progression in IDCM. ANKRD1 expression correlated with reduced cardiac contractility and compliance. The association of ANKRD1 with antiapoptotic response suggests its role as myocyte survival factor during late stage heart disease, warranting further studies on ANKRD1 during end-stage heart failure

    Blood pressure and cholesterol level checks as dynamic interrelated screening examinations

    Get PDF
    This study analysed the determinants of screening uptake for blood pressure and cholesterol level checks. Furthermore, it investigated the presence of possible spillover effects from one type of cardiovascular screening to another type of cardiovascular screening. A dynamic random effects bivariate panel probit model with initial conditions (Wooldridge-type estimator) was adopted for the estimation. The outcome variables were the participation in blood pressure and cholesterol level checks by individuals in a given year. The balanced panel sample of 21,138 observations was constructed from 1,626 individuals from the British Household Panel Survey (BHPS) between 1996 and 2008. The analysis showed the significance of past screening behaviour for both cardiovascular screening examinations. For both cardiovascular screening examinations state dependence exist. The study also shows a significant spillover effect of the cholesterol level check on the blood pressure check and vice versa. Also a poorer health status led to a higher uptake for both types of screening examinations. Changes in recommendations have to consider the fact that taking part in one type of cardiovascular screening examination can influence the decision to take part in the other type of cardiovascular screening examination

    Исследование кинетики процесса полимеризации 5-норборнен-2,3дикарбоксимид-n-метил ацетата

    Get PDF
    Previous family studies revealed a large number of calpain 3 (CAPN3) mutations that cause recessive forms of limb girdle muscular dystrophy (LGMD2A) with selective atrophy of the proximal limb muscles. Correlations between the nature and site of a particular mutation and its corresponding phenotype, however, can only be established from homozygous mutations, which are particularly rare in the alternatively spliced NS, IS1 and IS2 regions of CAPN3. Here we identified a sibling pair with LGMD2A-type muscular dystrophy caused by a homozygous Ser606Leu (S606L) substitution in the IS2 linker domain. Normal protein levels, unaltered myofibrillar targeting and conserved calcium-induced autocatalytic activity of the mutated protein could be demonstrated in muscle biopsies from one patient. Despite this inconspicuous modification of the IS2 linker between domains III and IV, both patients developed signs and symptoms of the disease within their second decade of life. The unexpected severity of the clinical manifestation points to the high relevance of the calpain 3-specific IS2 segment between domains III and IV. We conclude that the structural motif around the Ser606 residue represents an important functional site that may regulate the transient activation and limited proteolysis of calpain 3

    Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy (FCS): Theory and applications

    Full text link
    In the current AFM experiments the distribution of unfolding times, P(t), is measured by applying a constant stretching force f_s from which the apparent unfolding rate is obtained. To describe the complexity of the underlying energy landscape requires additional probes that can incorporate the dynamics of tension propagation and relaxation of the polypeptide chain upon force quench. We introduce a theory of force correlation spectroscopy (FCS) to map the parameters of the energy landscape of proteins. In the FCS the joint distribution, P(T,t) of folding and unfolding times is constructed by repeated application of cycles of stretching at constant fs, separated by release periods T during which the force is quenched to f_q<f_s. During the release period, the protein can collapse to a manifold of compact states or refold. We show that P(T,t) can be used to resolve the kinetics of unfolding as well as formation of native contacts and to extract the parameters of the energy landscape using chain extension as the reaction coordinate and P(T,t). We illustrate the utility of the proposed formalism by analyzing simulations of unfolding-refolding trajectories of a coarse-grained protein S1 with beta-sheet architecture for several values of f_s, T and f_q=0. The simulations of stretch-relax trajectories are used to map many of the parameters that characterize the energy landscape of S1.Comment: 23 pages, 9 figures; accepted to Biophysical Journa
    corecore