Single molecule force spectroscopy reveals unfolding of domains in titin upon
stretching. We provide a theoretical framework for these experiments by
computing the phase diagrams for force-induced unfolding of single domain
proteins using lattice models. The results show that two-state folders (at zero
force) unravel cooperatively whereas stretching of non-two-state folders occurs
through intermediates. The stretching rates of individual molecules show great
variations reflecting the heterogeneity of force-induced unfolding pathways.
The approach to the stretched state occurs in a step-wise "quantized" manner.
Unfolding dynamics depends sensitively on topology. The unfolding rates
increase exponentially with force f till an optimum value which is determined
by the barrier to unfolding when f=0. A mapping of these results to proteins
shows qualitative agreement with force-induced unfolding of Ig-like domains in
titin. We show that single molecule force spectroscopy can be used to map the
folding free energy landscape of proteins in the absence of denaturants.Comment: 12 pages, Latex, 6 ps figure