3,035 research outputs found

    Polynomial functors and combinatorial Dyson-Schwinger equations

    Full text link
    We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 11-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structure. Precisely, for any finitary polynomial endofunctor PP defined over groupoids, the system of combinatorial Dyson-Schwinger equations X=1+P(X)X=1+P(X) has a universal solution, namely the groupoid of PP-trees. The isoclasses of PP-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+B_+-operators. The solution to this equation is a series (the Green function) which always enjoys a Fa\`a di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Fa\`a di Bruno bialgebra. Varying PP yields different bialgebras, and cartesian natural transformations between various PP yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of PP-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-L\"of Type Theory (expounded elsewhere).Comment: v4: minor adjustments, 49pp, final version to appear in J. Math. Phy

    Open-closed TQFTs extend Khovanov homology from links to tangles

    Full text link
    We use a special kind of 2-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, in order to extend Khovanov homology from links to arbitrary tangles, not necessarily even. For every plane diagram of an oriented tangle, we construct a chain complex whose homology is invariant under Reidemeister moves. The terms of this chain complex are modules of a suitable algebra A such that there is one action of A or A^op for every boundary point of the tangle. We give examples of such algebras A for which our tangle homology theory reduces to the link homology theories of Khovanov, Lee, and Bar-Natan if it is evaluated for links. As a consequence of the Cardy condition, Khovanov's graded theory can only be extended to tangles if the underlying field has finite characteristic. In all cases in which the algebra A is strongly separable, i.e. for Bar-Natan's theory in any characteristic and for Lee's theory in characteristic other than 2, we also provide the required algebraic operation for the composition of oriented tangles. Just as Khovanov's theory for links can be recovered from Lee's or Bar-Natan's by a suitable spectral sequence, we provide a spectral sequence in order to compute our tangle extension of Khovanov's theory from that of Bar-Natan's or Lee's theory. Thus, we provide a tangle homology theory that is locally computable and still strong enough to recover characteristic p Khovanov homology for links.Comment: 56 pages, LaTeX2e with xypic and pstricks macro

    State sum construction of two-dimensional open-closed Topological Quantum Field Theories

    Full text link
    We present a state sum construction of two-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of Fukuma--Hosono--Kawai from triangulations of conventional two-dimensional cobordisms to those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that have a particular global structure. This construction reveals the topological interpretation of the associative algebra on which the state sum is based, as the vector space that the TQFT assigns to the unit interval. Extending the notion of a two-dimensional TQFT from cobordisms to suitable manifolds with corners therefore makes the relationship between the global description of the TQFT in terms of a functor into the category of vector spaces and the local description in terms of a state sum fully transparent. We also illustrate the state sum construction of an open-closed TQFT with a finite set of D-branes using the example of the groupoid algebra of a finite groupoid.Comment: 33 pages; LaTeX2e with xypic and pstricks macros; v2: typos correcte

    A categorical foundation for Bayesian probability

    Full text link
    Given two measurable spaces HH and DD with countably generated σ\sigma-algebras, a perfect prior probability measure PHP_H on HH and a sampling distribution S:HDS: H \rightarrow D, there is a corresponding inference map I:DHI: D \rightarrow H which is unique up to a set of measure zero. Thus, given a data measurement μ:1D\mu: 1 \rightarrow D, a posterior probability PH^=Iμ\widehat{P_H}= I \circ \mu can be computed. This procedure is iterative: with each updated probability PHP_H, we obtain a new joint distribution which in turn yields a new inference map II and the process repeats with each additional measurement. The main result uses an existence theorem for regular conditional probabilities by Faden, which holds in more generality than the setting of Polish spaces. This less stringent setting then allows for non-trivial decision rules (Eilenberg--Moore algebras) on finite (as well as non finite) spaces, and also provides for a common framework for decision theory and Bayesian probability.Comment: 15 pages; revised setting to more clearly explain how to incorporate perfect measures and the Giry monad; to appear in Applied Categorical Structure

    Rapid deconvolution of low-resolution time-of-flight data using Bayesian inference

    Get PDF
    The deconvolution of low-resolution time-of-flight data has numerous advantages, including the ability to extract additional information from the experimental data. We augment the well-known Lucy-Richardson deconvolution algorithm using various Bayesian prior distributions and show that a prior of second-differences of the signal outperforms the standard Lucy-Richardson algorithm, accelerating the rate of convergence by more than a factor of four, while preserving the peak amplitude ratios of a similar fraction of the total peaks. A novel stopping criterion and boosting mechanism are implemented to ensure that these methods converge to a similar final entropy and local minima are avoided. Improvement by a factor of two in mass resolution allows more accurate quantification of the spectra. The general method is demonstrated in this paper through the deconvolution of fragmentation peaks of the 2,5-dihydroxybenzoic acid matrix and the benzyltriphenylphosphonium thermometer ion, following femtosecond ultraviolet laser desorption

    Coinductive interpreters for process calculi

    Get PDF
    This paper suggests functional programming languages with coinductive types as suitable devices for prototyping process calculi. The proposed approach is independent of any particular process calculus and makes explicit the different ingredients present in the design of any such calculi. In particular structural aspects of the underlying behaviour model (e.g. the dichotomies such as active vs reactive, deterministic vs nondeterministic) become clearly separated from the interaction structure which defines the synchronisation discipline. The approach is illustrated by the detailed development in Charity of an interpreter for a family of process languages.(undefined

    Gain of 20q11.21 in human pluripotent stem cells impairs TGF-β-dependent neuroectodermal commitment

    Get PDF
    Gain of 20q11.21 is one of the most common recurrent genomic aberrations in human pluripotent stem cells. Although it is known that overexpression of the antiapoptotic gene Bcl-xL confers a survival advantage to the abnormal cells, their differentiation capacity has not been fully investigated. RNA sequencing of mutant and control hESC lines, and a line transgenically overexpressing Bcl-xL, shows that overexpression of Bcl-xL is sufficient to cause most transcriptional changes induced by the gain of 20q11.21. Moreover, the differentially expressed genes in mutant and Bcl-xL overexpressing lines are enriched for genes involved in TGF-beta- and SMAD-mediated signaling, and neuron differentiation. Finally, we show that this altered signaling has a dramatic negative effect on neuroectodermal differentiation, while the cells maintain their ability to differentiate to mesendoderm derivatives. These findings stress the importance of thorough genetic testing of the lines before their use in research or the clinic

    The homotopy theory of dg-categories and derived Morita theory

    Full text link
    The main purpose of this work is the study of the homotopy theory of dg-categories up to quasi-equivalences. Our main result provides a natural description of the mapping spaces between two dg-categories CC and DD in terms of the nerve of a certain category of (C,D)(C,D)-bimodules. We also prove that the homotopy category Ho(dgCat)Ho(dg-Cat) is cartesian closed (i.e. possesses internal Hom's relative to the tensor product). We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories CC and DD as the dg-category of (C,D)(C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the \emph{classifying space of dg-categories} (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent complexes (resp. perfect) on their product.Comment: 50 pages. Few mistakes corrected, and some references added. Thm. 8.15 is new. Minor corrections. Final version, to appear in Inventione
    corecore