
Coinductive Interpreters for Process Calculi

L. S. Barbosa and J. N. Oliveira

Departamento de Informática, Universidade do Minho, Braga, Portugal
{lsb,jno}@di.uminho.pt

Abstract. This paper suggests functional programming languages with
coinductive types as suitable devices for prototyping process calculi. The
proposed approach is independent of any particular process calculus and
makes explicit the different ingredients present in the design of any such
calculi. In particular structural aspects of the underlying behaviour model
(e.g., the dichotomies such as active vs reactive, deterministic vs non-
deterministic) become clearly separated from the interaction structure
which defines the synchronisation discipline. The approach is illustrated
by the detailed development in Charity of an interpreter for a family
of process languages.

Keywords: functional programming, applications, coinductive types.

1 Introduction

The essence of concurrent computation lies in the fact that a transition in a
system may interact with, or depend upon, another transition occurring in a dif-
ferent system executing alongside. Since this was observed by C. A. Petri [23], in
the early sixties, several process calculi have been proposed to specify and reason
about concurrent and communicating systems. The diversity of semantic models
proposed (emphasising e.g., linear or branching temporal structures, causality
or interleaving, synchrony or asynchrony) witness both the difficulty of under-
standing concurrency and the practical relevance of the topic ([27] provides a
comprehensive survey).

This paper argues that declarative programming, in its functional flavour,
may provide a suitable vehicle for prototyping such calculi and assess alternative
design decisions. Such a role for functional languages has long been established
in the formal methods community, at least since P. Henderson’s me too [10] pro-
posal for animating Vdm [15] specifications. However, only static, data-oriented,
aspects of computational systems are usually considered there.

Our starting point is the well known fact that initial algebras and final coal-
gebras, underlying inductive and coinductive types, provide abstract descriptions
of a variety of phenomena in programming. In particular, of data and behavioural
structures, respectively [5, 12].

Initiality and finality, as (categorical) universal properties, entail definitional
as well as proof principles, i.e., a basis for the development of program calculi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

directly based on (i.e., actually driven by) type specifications. Moreover, such
properties can be turned into programming combinators which are parametric
on the shape of the type structure, captured by a signature of operations encoded
in a suitable functor. These can be used, not only to reason about programs,
but also to program with. In fact, such combinators have been incorporated on
real programming languages as polytypic functionals, generalising the well-known
map, fold and unfold constructs (see, e.g., [25, 14, 13]).

In this paper we resort to the experimental programming language Charity
[6] to prototype process calculi and quickly implement simple interpreters for the
corresponding process languages. As a programming language, Charity is based
on the term logic of distributive categories and provides a definitional mechanism
for categorical datatypes i.e., for both initial algebras and final coalgebras. Pro-
cesses can therefore be directly represented as inhabitants of coinductive types,
i.e., of the carriers of final coalgebras for suitable Set endofunctors.

We believe this approach has a number of advantages:

– First of all, it provides a uniform treatment of processes and other computa-
tional structures, e.g., data structures, both represented as categorical types
for functors capturing signatures of, respectively, observers and constructors.
Placing data and behaviour at a similar level conveys the idea that process
models can be chosen and specified according to a given application area, in
the same way that a suitable data structure is defined to meet a particular
engineering problem. As a prototyping platform, Charity is a sober tool
in which different process combinators can be defined, interpreters for the
associated languages quickly developed and the expressiveness of different
calculi compared with respect to the intended applications. We believe that
prototyping has an important role in any specification method, as it sup-
ports stepwise development. In particular, it allows each design stage to be
immediately animated and quick feedback about its behaviour gathered.

– The approach is independent of any particular process calculus and makes
explicit the different ingredients present in the design of any such calculi.
In particular structural aspects of the underlying behaviour model (e.g., the
dichotomies such as active vs reactive, deterministic vs non-deterministic)
become clearly separated from the interaction structure which defines the
synchronisation discipline.

– Finally, as discussed in an author’s previous paper [3], proofs of process prop-
erties can be done in a calculational (basically equational and pointfree) style,
therefore circumventing the explicit construction of bisimulations typical of
most of the literature on process calculi1.

2 Preliminaries

It is well known that the signature of a data type, i.e., its contractual interface,
may be captured by a functor, say T, and that a canonical representative of
1 This sort of proofs by calculation is addressed in [3]; see also [2].

the envisaged structure arises as a solution, i.e., as fixed point, of the equation
X ∼= T X. In fact, an abstract data structure is defined as a T-algebra, i.e., a
map t : T D −→ D which specifies how values of D are built using a collection
of constructors, recorded in T. The canonical representative of such T-algebras
is the (initial) term algebra.

There are, however, several phenomena in computing which are hardly defin-
able (or even simply not definable) in terms of a complete set of constructors.
This leads to coalgebra theory [24]. While in algebra data entities are built by
constructors and regarded as different if ‘differently constructed’, coalgebras deal
with entities that are observed, or decomposed, by observers and whose internal
configurations are identified if not distinguishable by observation. Given an en-
dofunctor T, a T-coalgebra is simply a map p : U −→ T U which may be
thought of as a transition structure, of shape T, on a set U , usually referred to
as the carrier or the state space. The shape of T reflects the way the state is
(partially) accessed, through observers, and how it evolves, through actions. As
a consequence, equality has to be replaced by bisimilarity (i.e., equality with
respect to the observation structure provided by T) and coinduction replaces
induction as a proof principle. For a given T, the final coalgebra consists of all
possible behaviours up to bisimilarity, in the same sense that an initial algebra
collects all terms up to isomorphism. This is also a fixpoint of a functor equation
and provides a suitable universe for reasoning about behavioural issues. This has
lead to some terminology for final coalgebras: coinductive or left datatypes in [9]
or [7], codata and codatatypes [16], final systems in [24] or object types in [11].

A T-coalgebra morphism between two T-coalgebras, p and q, is a map h
between their carriers making the following diagram to commute

U
p //

h

��

T U

T h

��
V

q // T V

The unique such morphism to the final coalgebra ωT : νT −→ T νT from any
other coalgebra 〈U, p〉 is called a T-anamorphism [20], or the coinductive ex-
tension of p [26]. It is written [(p)]T or, simply, [(p)], and satisfies the following
universal property,

k = [(p)]T ⇔ ωT · k = T k · p

being unique up to isomorphism.
Its dual, in the algebraic side, is the unique arrow ([d])T, or simply ([d]),

from the initial T-algebra to any other algebra d, known as a catamorphism.
Both d here and p above are referred in the sequel as the catamorphism (resp.,
anamorphism) gene.

Charity, the prototyping language used in this paper, provides direct sup-
port for both initial algebras and final coalgebras for strong functors. The strong
qualification means that the underlying functor T possess a strength [17, 7], i.e.,

a natural transformation τT
r : T×− =⇒ T(Id×−) subject to certain conditions.

Its effect is to distribute context along functor T. When types are modeled in
such a setting, the universal combinators (as, e.g., cata and anamorphisms) will
possess a somewhat more general shape, able to deal with the presence of ex-
tra parameters in the functions being defined. This holds, of course, even when
the underlying category is not cartesian closed (and therefore currying is not
available).

3 Processes and Combinators

3.1 Processes

The operational semantics of a process calculus is usually given in terms of a
transition relation a−→ over processes, indexed by a set Act of actions, in which
a process gets committed, and the resulting ‘continuations’, i.e., the behaviours
subsequently exhibited. A first, basic design decision concerns the definition of
what should be understood by such a collection. As a rule, it is defined as a
set, in order to express non-determinism. Other, more restrictive, possibilities
consider a sequence or even just a single continuation, modelling, respectively,
‘ordered’ non-determinism or determinism. In general, this underlying behaviour
model can be represented by a functor B.

An orthogonal decision concerns the intended interpretation of the transition
relation, which is usually left implicit or underspecified in process calculi. We
may, however, distinguish between

– An ‘active’ interpretation, in which a transition p
a−→ q is informally

characterised as ‘p evolves to q by performing an action a’, both q and a
being solely determined by p.

– A ‘reactive’ interpretation, informally reading ‘p reacts to an external stim-
ulus a by evolving to q’.

Processes will then be taken as inhabitants of the carrier of the final coalgebra
ω : ν −→ T ν, with T defined as B (Act × Id), in the first case, and (B Id)Act,
in the second. To illustrate our approach, we shall focus on the particular case
where B is the finite powerset functor and the ‘active’ interpretation is adopted.
The transition relation, for this case, is given by p

a−→ q iff 〈a, q〉 ∈ ω p.
The restriction to the finite powerset avoids cardinality problems and assures

the existence in Set of a final coalgebra for T. This restricts us to image-finite
processes, a not too severe restriction in practice which may be partially circum-
vented by a suitable definition of the structure of Act. For instance, by taking
Act as channel names through which data flows. This corresponds closely to
‘Ccs with value passing’ [21]. Therefore, only the set of channels, and not the
messages (seen as pairs channel/data), must remain finite. In fact, as detailed
below, an algebraic structure should be imposed upon the set Act of actions in
order to capture different interaction disciplines. This will be called an interac-
tion structure in the sequel.

Down to the prototype level, we will start by declaring a process space as
the coinductive type Pr(A), parametrized by a specification A of the interaction
structure:

data C -> Pr(A) = bh: C -> set(A * C).

where set stands for a suitable implementation of (finite) sets. See appendix B
for details about the syntax of Charity.

3.2 Interaction

We first assume that actions are generated from a set L of labels, i.e., a set of
formal names. Then, an interaction structure is defined as an Abelian positive
monoid 〈Act; θ, 1〉 with a zero element 0. It is assumed that neither 0 nor 1 belong
to the set L of labels. The intuition is that θ determines the interaction discipline
whereas 0 represents the absence of interaction: for all a ∈ Act, aθ0 = 0. On the
other hand, the monoid being being positive implies aθa′ = 1 iff a = a′ = 1.
Notice that the role of both 0 and 1 is essentially technical in the description of
the interaction discipline. In some situations, 1 may be seen as an idle action,
but its role, in the general case, is to equip the behaviour functor with a monadic
structure, which would not be the case if Act were defined simply as an Abelian
semigroup.

Let us consider two examples of interaction structures. For each process cal-
culus, actions over L are introduced as an inductive type Ac(L) upon which an
equality function and a product θ are defined.

Co-occurrence. A basic example of an interaction structure captures action co-
occurrence: θ is defined as aθb = 〈a, b〉, for all a, b ∈ Act different from 0 and
1. The corresponding type, parametric on the set L labels, is therefore defined
inductively as follows

data Ac(L) -> A =

act: L -> A | syn: A * A -> A | nop: 1 -> A | idle: 1 -> A.

The embedding of labels into actions is explicitly represented by the constructor
act. The distinguished actions 0 and 1 are denoted by nop and idle, respect-
ively. Action co-occurrence, for any actions a and b different from 0 and 1, is
represented by syn(a,b). The specification is complete with a definition of ac-
tion product θ, encoded here as the function prodAc, and an equality predicate
eqA on actions, both parametric on L. The actual Charity code for θ is as
follows,

def prodAc : Ac(L) * Ac(L) -> Ac(L)

= (nop, _) => nop | (_ ,nop) => nop | (idle, x) => x

| (x ,idle) => x | (a1, a2) => syn(a1, a2).

The CCS case. Ccs [21] synchronisation discipline provides another example.
In this case the set L of labels carries an involutive operation represented by
an horizontal bar as in a, for a ∈ L. Any two actions a and a are called com-
plementary. A special action τ /∈ L is introduced to represent the result of a
synchronisation between a pair of complementary actions. Therefore, the result
of θ is τ whenever applied to a pair of complementary actions and 0 in all other
cases, except, obviously, if one of the arguments is 1.

We first introduce the involutive complement operation on labels by replacing
L by the parametric type Lb(N) and defining a label equality function eqL.

data Lb(N) -> I = name: N -> I | inv: I -> I.

Then the interaction structure is defined by Ac(L) as above, together with action
equality and product:

def prodAc{eqL: Lb(N) * Lb(N) -> bool} : Ac(Lb(N)) * Ac(Lb(N)) -> Ac(Lb(N))

= (act(1),act(k)) | or(eqL(l,inv(k)),eqL(inv(l),k) => tau

| .. => nop

| (idle, x) => x | (x ,idle) => x | _ => nop.

3.3 Dynamic Combinators

The usual Ccs dynamic combinators — i.e., inaction, prefix and non-deterministic
choice — are defined as operators on the final universe of processes. Being no
recursive, they have a direct (coinductive) definition which depends solely on
the chosen process structure. Therefore, the inactive process is represented as a
constant nil : 1 −→ ν upon which no relevant observation can be made. Prefix
gives rise to an Act-indexed family of operators a. : ν −→ ν, with a ∈ Act.
Finally, the possible actions of the non-deterministic choice of two processes p
and q corresponds to the collection of all actions allowed for p and q. Therefore,
the operator + : ν × ν −→ ν can only be defined over a process structure in
which observations form a collection. Formally,

inaction ω · nil = ∅
choice ω · + = ∪ · (ω × ω)
prefix ω · a. = sing · labela

where sing = λx . {x} and labela = λx . 〈a, x〉. These definitions are directly
translated to Charity as functions bnil, bpre and bcho, respectively:

def bnil: 1 -> Pr(A)

= () => (bh: empty).

def bpre: A * Pr(A) -> Pr(A)

= (a, t) => (bh: sing(a,t)).

def bcho: Pr(A) * Pr(A) -> Pr(A)

= (t1, t2) => (bh: union(bh t1, bh t2)).

3.4 Static Combinators

Persistence through action occurrence leads to the recursive definition of static
combinators. This means they arise as anamorphisms generated by suitable
‘gene’ coalgebras. Interleaving, restriction and renaming are examples of static
combinators, which, moreover, depend only on the process structure. On the
other hand, synchronous product and parallel composition also rely on the inter-
action structure underlying the calculus. In each case, we give both a mathemat-
ical definition of the combinator and the corresponding Charity code. There is
a direct correspondence between these two levels. Some ‘housekeeping’ morph-
isms, like the diagonal M, used in the former are more conveniently handled by
the Charity term logic.

Interleaving. Although interleaving, a binary operator 9 : ν × ν −→ ν, is not
considered as a combinator in most process calculi, it is the simplest form of ‘par-
allel’ aggregation in the sense that it is independent of any particular interaction
discipline. The definition below captures the intuition that the observations over
the interleaving of two processes correspond to all possible interleavings of the
observations of its arguments. Thus, one defines 9 = [(α9)], where

α9 = ν × ν
M // (ν × ν)× (ν × ν)

(ω×id)×(id×ω) // (P(Act× ν)× ν)× (ν × P(Act× ν))

τr×τl // P(Act× (ν × ν))× P(Act× (ν × ν))

∪ // P(Act× (ν × ν))

The Charity code 2 for this

def bint: Pr(Ac(L)) * Pr(Ac(L)) -> Pr(Ac(L))

= (t1, t2) =>

(| (r1,r2) => bh: union(taur(bh r1, r2), taul(bh r2, r1))

|) (t1,t2).

2 Notice morphisms τr : P(Act×X) × C −→ P(Act× (X × C)) and τl : C ×
P(Act×X) −→ P(Act× (C ×X)) stand for, respectively, the right and left strength
associated to functor P(Act× Id). They are straightforwardly encoded in Charity,
e.g., def taur = (s,t) => set{(a,x) => (a, (x,t))} s.

Restriction and Renaming. The restriction combinator \K , for each subset K ⊆
L, forbids the occurrence of actions in K. Formally, \K = [(α\K

)] where

α\K
= ν

ω // P(Act× ν)
filterK // P(Act× ν)

where filterK = λs . {t ∈ s| π1 t /∈ K}.
Once an interaction structure is fixed, any homomorphism f : Act −→ Act

lifts to a renaming combinator [f] between processes defined as [f] = [(α[f])],
where

α[f] = ν
ω // P(Act× ν)

P(f×id)// P(Act× ν)

These two combinators are coded below as functions bren and bret, respectively.
For convenience, the renaming homomorphism is represented as an endomorph-
ism of Ac(Lb(N)).

def bren{eqL: Lb(N) * Lb(N) -> bool}:

Pr(Ac(Lb(N))) * map(Ac(Lb(N)),Ac(Lb(N))) -> Pr(Ac(Lb(N)))

= (t, h) =>

(| r => bh: set{x =>

{ ff => x | ss a => (a, p1 x)

} app{eqA{eqL}}(compren h, p0 x) } (bh r)

|) t.

def bret{eqL: Lb(N) * Lb(N) -> bool}:

Pr(Ac(Lb(N))) * set(Lb(N)) -> Pr(Ac(Lb(N)))

= (t, k) =>

(| r => bh:

filter{x => not member{eqA{eqL}}(p0 x, compret k)}

(bh r)

|) t.

Any restriction set K of labels will have to be extended to a set of actions, by
application of the embedding act, before it can be used in bret. Additionally,
it may be ‘completed’ in order to cope with some syntactic conventions appear-
ing in particular calculi. For example, to model Ccs, it becomes necessary to
close K with respect to label complement (i.e., the constructor inv in the Ccs
label algebra implementation given above). Both tasks are achieved by function
compret below, which should be tuned according to the syntactic particularities
of the calculus under consideration. In the case of Ccs it will look like

def compret: set(Lb(N)) -> set(Ac(Lb(N)))

= s => union(set{l => act(l)} s , set{l => act(inv(l)) } s).

Function compren, in the specification of bren does a similar completion of the
renaming homomorphism.

Synchronous Product. This static operator models the simultaneous execution
of its two arguments. At each step the resulting action is determined by the
interaction structure for the calculus. Formally, ⊗ = [(α⊗)] where

α⊗ = ν × ν
(ω×ω) // P(Act× ν)× P(Act× ν)

δr // P(Act× (ν × ν)) sel // P(Act× (ν × ν))

where sel = filter{0} filters out all synchronisation failures. Notice how interaction
is catered by δr — the distributive law for the strong monad P(Act× Id). In fact,
the monoidal structure in Act extends functor P(Act× Id) to a strong monad, δr

being the Kleisli composition of the left and the right strengths. This, on its turn,
involves the application of the monad multiplication to ‘flatten’ the result and
this, for a monoid monad, requires the suitable application of the underlying
monoidal operation. This, in our case, fixes the interaction discipline. Going
pointwise:

δP(Act×Id)
r 〈c1, c2〉 = {〈a′θa, 〈p, p′〉〉| 〈a, p〉 ∈ c1 ∧ 〈a′, p′〉 ∈ c2}

In Charity,

def bsyn{eqL: Lb(N) * Lb(N) -> bool}:

Pr(Ac(Lb(N))) * Pr(Ac(Lb(N))) -> Pr(Ac(Lb(N)))

= (t1, t2) =>

(| (r1,r2) => bh: sel{eqL} deltar{eqL} (bh r1, bh r2) |) (t1,t2).

where deltar and sel implement morphisms δr and sel, respectively.

Parallel Composition. Parallel composition arises as a combination of interleav-
ing and synchronous product, in the sense that the evolution of p | q, for processes
p and q, consists of all possible derivations of p and q plus the ones associated
to the synchronisations allowed by the particular interaction structure for the
calculus. This cannot be achieved by mere composition of the corresponding
combinators 9 and ⊗: it has to be performed at the ‘genes’ level for 9 and ⊗.
Formally, | = [(α|)], where

α| = ν × ν
M // (ν × ν)× (ν × ν)

(α9×α⊗)
// P(Act× (ν × ν))× P(Act× (ν × ν))

∪ // P(Act× (ν × ν))

which is coded in Charity as

def bpar{eqL: Lb(N) * Lb(N) -> bool}:

Pr(Ac(Lb(N))) * Pr(Ac(Lb(N))) -> Pr(Ac(Lb(N)))

= (t1, t2) =>

(| (r1,r2) => bh: union(

sel{eqL} deltar{eqL} (bh r1, bh r2),

union(taur(bh r1, r2), taul(bh r2, r1)))

|) (t1,t2).

4 A Process Language

There is so far no place for recursive processes in the approach we have been
discussing. The possibility of supplying the dynamics of each particular example
as a particular ‘gene’ coalgebra, is unsatisfactory in this respect. Instead, the
obvious way to deal with recursive processes in general consists of defining a
language whose terms stand for process expressions, including a construction
involving process variables as valid terms. Such variables should be bound, in
whatever we understand as the interpreter environment, by process equations of
the form v = exp, where v is a variable and exp a process expression. We have,
however, to proceed with some care as it is well-known that not all defining
equations determine process behaviour in an unique way. For example, not only
any process is a solution to v = v, but also equations like v = v |v admit different,
no bisimilar, solutions. One way of ensuring the existence of unique solutions,
is to require that all variables occurring on the right hand side of an equation
are guarded, in the sense that they are bounded by a prefix combinator. This
has been proved in [21] as a sound criteria for the existence of unique solutions
to what is called there strict bisimulation equations which, recall, correspond to
equality in the final coalgebra. In fact, in [21], guardedness is only required for
variables wrt expressions in which they occurr. The extension, assumed here, of
this requirement to all variables in an expression facilitates the development of
the interpreter and does not appear to be a major restriction. Therefore, our
process language will include a prefix-like construction — pvar — to introduce
(guarded) variables in an expression.

Summing up, we are left with the tasks of defining a term language for
processes, its interpretation in the (final) semantic model and a suitable model
for the environment collecting the relevant process defining equations. Let us
tackle them, one at a time.

The Language. As expected, a term language for processes, over a set L of
labels, will be defined as an inductive type. The Charity declaration below
introduces Ln(L) as the initial algebra for a functor Σ induced by the following
BNF description:

〈P〉 ::= pnil | ppre(a, 〈P〉) | pcho(〈P〉, 〈P〉) |
pint(〈P〉, 〈P〉) | psyn(〈P〉, 〈P〉) | ppar(〈P〉, 〈P〉) |
pret(〈P〉,K) | pren(〈P〉, f) | pvar(a, i)

where a ∈ Ac(L), K ⊆ L, i is a process variable and f a renaming Ac(L)
homomorphism. Constructors pnil, ppre, pcho, pint, psyn, ppar, pret and
pren correspond to the different process combinators. The only exception is
pvar, which builds a new process given an action and a process variable. Its
semantics is defined similarly to the one of the prefix combinator, according to
the discussion above.

The equivalent Charity declaration follows. Note the definition is suffi-
ciently generic, as it is parametric on L and resorts to whatever interaction
structure is provided for Ac(L):

data Ln(L) -> P =

pnil: 1 -> P | ppre: Ac(L) * P -> P |

pcho: P * P -> P | pint: P * P -> P |

psyn: P * P -> P | ppar: P * P -> P |

pret: P * set(L) -> P |

pren : P * map(Ac(L), Ac(L)) -> P |

pvar: Ac(L) * string -> P.

The Interpreter. How can Ln(L) expressions be interpreted as processes? Within
the initial algebra approach to semantics, once the syntax is fixed, a semantic
Σ-algebra would be produced and the interpretation defined as the associated
catamorphism. Our semantic universe, however, is the final coalgebra for functor
P(Ac(L)× Id), and, therefore, the dual final semantics approach will be followed
up. What has to be done is to cast the syntax, i.e., the set of terms Ln(L),
into a P(Ac(L)× Id)-coalgebra. The interpreter will follow as the associated
anamorphism.

Let function sem : Ln(L) −→ Pr(Ac(L)) stand for the desired interpreter.
The ‘gene’ for this anamorphism is a ‘syntactic’ coalgebra syn : Ln(L) −→
P(Ac(L)× Ln(L)) which computes the ‘syntactical’ derivations of process terms.
Observe, now, that the ‘canonical’ way to define syn is as a Σ-catamorphism.
Its ‘gene’ is denoted by αsyn in the sequel. The diagram below contains the
‘full’ picture, where αsyn is actually the only function to be supplied by the
programmer:

Pr(Ac(L))
ω // P(Ac(L)× Pr(Ac(L)))

Ln(L)

sem

OO

syn // P(Ac(L)× Ln(L))

P(id×sem)

OO

Σ Ln(L)

α

OO

Σ syn // Σ P(Ac(L)× Ln(L))

αsyn

OO

Then, we get for free
syn = ([αsyn])Σ

and
sem = [(syn)]P(Ac(L)×Id)

where ω and α are, respectively, the final P(Ac(L)× Id)-coalgebra and the initial
Σ-algebra.

Environment. Our last concern is the introduction of an environment to the
interpreter in order to collect all the process defining equations relevant to con-
duct experiments on a particular network of processes. Such an environment E
can be thought of as mapping assigning to each process variable an expression
in Ln(L). Assuming variable identifiers are modeled by strings, E will be typed
in Charity as map(string, Ln(L)). Clearly, E acts as a supplier of context
information to the interpretation function sem, whose type is

sem : Ln(L)× E −→ Pr(Ac(L))

All types in Charity are strong and, therefore, this extra parameter is smoothly
accommodated in our framework. In fact, both sem and syn become defined as,
respectively, a strong anamorphism for P(Ac(L)× Id) and a strong catamorph-
ism for Σ. The diagram above remains valid, but it has to be interpreted in
the Kleisli category for the product comonad. Its interpretation in the original
category is depicted in the diagram below, which makes explicit the structure
involved by including dotted lines to correctly type an arrow in the Kleisli as
an arrow in the original category. Symbols ω′ and α′ denote, respectively, the
corresponding final coalgebra and initial algebra in the Kleisli, defined simply as
ω · π1 and α · π1 (cf., proposition 4.3 in [7]). Thus,

Pr(Ac(L))× E
ω′ // P(Ac(L)× Pr(Ac(L)))

Pr(Ac(L))

Ln(L)× E

sem

OO

syn // P(Ac(L)× Ln(L)) P(Ac(L)× Ln(L))× E

OO

Ln(L)

Σ Ln(L)× E

α′

OO

// Σ P(Ac(L)× Ln(L)) Σ P(Ac(L)× Ln(L))× E

αsyn

OO

Fig. 1. The overall interpreter diagram

Formally, the interpretation function arises as

sem = unfoldP(Ac(L)×Id) syn

where

syn = foldΣ αsyn

and unfold /fold stand, respectively, for the strong anamorphism and cata-
morphism combinator.

The actual picture is slightly more complex, however, as the definition of syn
is made in terms of both the computations on the substructures of its argument
and these substructures themselves. To be precise, it arises as a strong para-
morphism. Paramorphisms [19] generalise catamorphisms in order to deal with
cases in which the result of a recursive function depends not only on computa-
tions in substructures of its argument, but also on the substructures themselves.
The recursion pattern it entails, in the particular case of N, is known as primitive
recursion.

In the general case, a paramorphism is defined as the unique arrow making
the following diagram to commute.

X T (X × µT)
foo

µT

parT f

OO

TµT

T 〈parT f,id〉

OO

αT

oo

Notice the domain of the ‘target algebra’ is now the T image of its carrier with
the inductive type itself. Paramorphisms have no direct implementation in Cha-
rity, but we can program their transformation to catamorphisms captured by
law

parT f = π1 · ([〈f, αT · T π2〉])T

The language, however, provides an easier way of dealing with functions defined
as paramorphisms, by using ‘#’s. Inside a fold, # stands for the value being
currently analysed, before the recursive application. This is exactly what is done
in the interpreter sem presented in Appendix A. Not much remains to be said
about this definition as the encoding of each process combinator has already
been detailed in the previous section. Just note the interpretation of the new
construction pvar(a,i) is as expected: the continuation process arises as the
interpretation of the process expression associated to variable i, if i is collected
in the environment, or pnil otherwise.

To fully understand the definition, observe that the derivations of a process
expression are (a set of pairs of actions and) process expressions, whereas, in
the previous definition of ‘stand-alone’ combinators they were defined in terms
of processes themselves. As an illustration, compare the entry corresponding to
renaming in the ‘gene’ of syn with the definition of bren in the previous section.
This same observation justifies the auxiliary definitions of stau1, stau2, ssel,
sdelta1 and sdelta2, whose role is similar to the original taur, sel and deltar.

5 Conclusions

This paper specifies process combinators in a way which is directly translatable
into the Charity programming language. In this way, a functional implement-
ation of a (family of) of calculi becomes available in which experiments can be
carried out. By experiments one means that a process expression is supplied
to the system and its evolution traced. In fact, all the allowed derivations are
computed step by step, resorting to the Charity evaluation mechanism for
coinductive types. Experimenting with process prototypes is not essentially dif-
ferent from animating data oriented specifications in any of the rapid prototyping
systems popular among the formal methods community. The difference lies in
the underlying shift towards coinduction, namely final semantics for processes,
an active research area triggered by Aczel’s landmark paper [1]. Other recent
contributions include, for example, references [28] and [18] on model theory for
Csp and π-calculus, respectively. Our approach is certainly more programming
oriented. Rather than foundational, it favours both calculation [3] and anima-
tion. Current work includes the full development of a prototyping kernel for this
kind of calculi specifications, incorporating an interface layer to provide a more
adequate user interface for prototype testing. We feel challenged by mobility
[22], whose extension in this framework should incorporate variable binding and
dynamically generated names and localities.

Although we have illustrated our approach to process prototyping going
through, in some detail, a particularly well known family of such calculi in the
Ccs tradition, we would like to stress its genericity at three distinct levels.

First of all, the behaviour model is a parameter of the calculus (and of its in-
terpreter). Recall that processes were defined as inhabitants of the carrier of the
final coalgebra for T = B (Act× Id), for B the finite powerset functor. We have
shown that, assuming a commutative monoidal structure over Act, the behaviour
model captured by P(Act× Id) is a strong Abelian monad. The proposed con-
structions remain valid for any instantiation of B by such a monad. For example,
taking B the identity monad (B = Id), leads to a calculus of deterministic (and
perpetual) processes. A further elaboration of this would replace Id by Id + 1,
entailing a calculus for deterministic, but partial processes in the sense that the
derivation of a ‘dead’ state is always possible. Such a calculus is far less expressive
than the one dealt with in this paper. In fact, derivations do not form any kind of
collection and, thus, non-determinism is ruled out. Therefore, combinators which
explore non-determinism, lack a counterpart here. Such is the case of choice, in-
terleaving and parallel. On the other hand, the composition of Id + 1 with the
monoidal monad generated by Act is still a strong Abelian monad, and there-
fore synchronous product is still definable. A limited form of non-determinism
is recovered, however, by taking B as the sequence monad. Families of calculi of
partial and ordered processes would be declared in Charity as, respectively,

data C -> PartialPr(A) = bh: C -> SF(A * C).

and

data C -> OrderedPr(A) = bh: C -> list(A * C).

A second source of genericity, orthogonal to the one above, is the separate
specification of an interaction structure. Note that all the process combinators
introduced in this paper are either independent of any particular interaction
discipline or parametrized by it.

Finally, we are by no means limited to functors of the T = B (Act × Id)
family, which, as mentioned above, correspond to an ‘active’ interpretation of
the process structure. For example, an universe for reactive processes may be
specified as a final coalgebra for T X = (B X)Act, parametrized, again, on a
behaviour monad and an interaction structure.. Taking B as the finite powerset
monad, such processes are declared as

data C -> ReactivePr(A) = bh: C -> A => set(C).

This kind of genericity is the main concern of related research on state-based
componentware is reported in [4].

Acknowledgements. The authors wish to thank the Logic and Formal Meth-
ods group at Minho for the smooth working environment they had the chance
to benefit from. Comments by Jan Rutten and Luis Monteiro about research
described in this paper are gratefully acknowledged.

References

1. P. Aczel. Final universes of processes. In B. et al, editor, Proc. Math. Foundations
of Programming Semantics. Springer Lect. Notes Comp. Sci. (802), 1993.

2. L. S. Barbosa. Components as Coalgebras. PhD thesis, DI, Universidade do Minho,
2001.

3. L. S. Barbosa. Process calculi à la Bird-Meertens. In CMCS’01, volume 44.4,
pages 47–66, Genova, April 2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

4. L. S. Barbosa and J. N. Oliveira. State-based components made generic. In H. P.
Gumm, editor, CMCS’03, Elect. Notes in Theor. Comp. Sci., volume 82.1. Elsevier,
2003.

5. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997.

6. R. Cockett and T. Fukushima. About Charity. Yellow Series Report No. 92/480/18,
Dep. Computer Science, University of Calgary, June 1992.

7. R. Cockett and D. Spencer. Strong categorical datatypes I. In R. A. G. Seely,
editor, Proceedings of Int. Summer Category Theory Meeting, Montréal, Québec,
23–30 June 1991, pages 141–169. AMS, CMS Conf. Proceedings 13, 1992.

8. R. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for
categorical programming. Theor. Comp. Sci., 139:69–113, 1995.

9. T. Hagino. A typed lambda calculus with categorical type constructors. In D. H.
Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory and Computer
Science, pages 140–157. Springer Lect. Notes Comp. Sci. (283), 1987.

10. P. Henderson. me too: A language for software specification and model building.
Preliminary Report, University of Stirling, 1984.

11. B. Jacobs. Objects and classes, co-algebraically. In C. L. B. Freitag, C.B. Jones and
H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages
83–103. Kluwer Academic Publishers, 1996.

12. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–159, 1997.

13. P. Jansson and J. Jeuring. PolyP - a polytypic programming language exten-
sion. In POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 470–482. ACM Press, 1997.

14. B. Jay and J. Cockett. Shaply types and shape polymorphism. In D. Sannella,
editor, Programming Languages and Systems — ESOP’94, pages 302–316. Springer
Lect. Notes Comp. Sci. (788), 1994.

15. C. B. Jones. Specification and design of (parallel) programs. In R. E. A. M. (IFIP),
editor, Information Processing 83, pages 321–332. Elsevier Science Publishers B.
V. (North-Holland), 1983.

16. R. B. Kieburtz. Codata and comonads in Haskell. Unpublished manuscript,
1998.

17. A. Kock. Strong functors and monoidal monads. Archiv für Mathematik, 23:113–
120, 1972.

18. M. Lenisa. Themes in Final Semantics. PhD thesis, Universita de Pisa-Udine,
1998.

19. L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–425, 1992.
20. E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,

lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of the 1991
ACM Conference on Functional Programming Languages and Computer Architec-
ture, pages 124–144. Springer Lect. Notes Comp. Sci. (523), 1991.

21. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-
Hall International, 1989.

22. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and
II). Information and Computation, 100(1):1–77, 1992.

23. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Technische Hochschule
Darmstadt, 1962.

24. J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp. Sci., 249(1):3–
80, 2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

25. T. Sheard. Type parametric programming. Technical report, Oregon Graduate
Institute of Science and Technology, Portland, USA, 1993.

26. D. Turi and J. Rutten. On the foundations of final coalgebra semantics: non-well-
founded sets, partial orders, metric spaces. Math. Struct. in Comp. Sci., 8(5):481–
540, 1998.

27. G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. M.
Gabbay, and T. S. E. Gabbay, editors, Handbook of Logic in Computer Science
(vol. 4), pages 1–148. Oxford Science Publications, 1995.

28. U. Wolter. A coalgebraic introduction to csp. In CMCS’99, Elect. Notes in Theor.
Comp. Sci., volume 19. Elsevier, 1999.

29. G. C. Wraith. A note on categorical data types. In D. e. a. Pitt, editor, Proc. Cat-
egory Theory and Computer Science, pages 118–127. Springer Lect. Notes Comp.
Sci. (389), 1988.

A The Interpreter

def sem{eqL: Lb(N) * Lb(N) -> bool}:

Ln(Lb(N)) * map(string, Ln(Lb(N))) -> Pr(Ac(Lb(N)))

= (exp,m) => (| e => bh: syn{eqL}(e,m) |) exp.

def syn{eqL: Lb(N) * Lb(N) -> bool}:

Ln(Lb(N)) * map(string, Ln(Lb(N)))

-> set(Ac(Lb(N)) * Ln(Lb(N)))

= (pr,m) =>

{| pnil: () => empty

| ppre: (a,l) => sing(a, p1 #)

| pvar: (a,s) => { ss(p) => sing(a, p)

| ff => empty

} app{eq_string}(m,s)

| pcho: (lp,lq) => union(lp, lq)

| pint: (lp,lq) => union(stau1(lp, p1 #), stau1(lq, p0 #))

| psyn: (lp,lq) => ssel{eqL} sdelta1{eqL} (lp,lq)

| ppar: (lp,lq) => union(union(stau2(lp, p1 #), stau2(lq, p0 #)),

ssel{eqL} sdelta2{eqL} (lp,lq))

| pret: (l,k) => set{x => (p0 x, pret(p1 x, k))}

filter{x => not member{eqA{eqL}}(p0 x, compren k)} l

| pren: (l,h) => set{x => { ff => (p0 x, pren(p1 x, h))

| ss a => (a, pren(p1 x, h))

} app{eqA{eqL}}(compret h, p0 x) } l

|} pr.

where

def stau1: set(Ac(L) * Ln(L)) * Ln(L) -> set(Ac(L) * Ln(L))

= (s,p) => set{(a,x) => (a, pint(x,p))} s.

def ssel{eql: L * L -> bool}: set(Ac(L) * B) -> set(Ac(L) * B)

= s => filter{x => not eqA{eql}(p0 x, nop)} s.

B Programming in Charity

Charity [6] makes only a few assumptions on the underlying semantics category: it
assumes distributivity and replaces the Cartesian closedness requirement, implicit in
the original approaches to categorical types, namely in the [29] refinement of Hagino’s
work, by the assumption that all datatypes are strong. Charity primitive types are,
then, the nullary (denoted by 1) and binary product types (denoted by the infix oper-
ator *, with projections p0 and p1). The absence of exponentials at the basic level of
the language gives to programming in Charity a rather different flavour when com-
pared with more traditional functional languages. In particular, functions are not values
and function composition, instead of function application, is taken as the fundamental
primitive in the language. This does not mean, however, that Charity lacks support
for higher-order types: simply they have to be explicitly declared.

In this context, Charity may be classified as a polymorphic, strongly-typed lan-
guage which is functional in style. In particular, any program has a guarantee of ‘ter-
mination’, in the sense that the term representing it always reduces to a head normal
form and, therefore, a ‘response’ is produced. Such a ‘response’ is computed either lazily
or eagerly depending on the types involved being coinductive or inductive, respectively.
In any case, the type system simply blocks the possibility of writing functions that may
never terminate. Although both data and programs can be expressed pointfree in terms
of such categorical combinators, programming at such a level becomes rather awkward
(namely, by the number of projections often needed to distribute variables along an ex-
pression). Charity programs are written in a term logic [8] for distributive categories
enriched with a definitional mechanism for inductive and coinductive strong datatypes.
This allows the use of variables in combinator expressions and pattern matching.

Let us briefly review the main ‘building blocks’ of a Charity program, starting
with type declarations. The declaration of a coinductive type in Charity has the
following format:

data S ->T(A) = o1:S ->E1(A, S) | . . . | on:S ->En(A, S).

which introduces the type T(A), parametric on A. The declaration format conveys the
idea that morphisms from any type S to T(A) are solely determined by morphisms
from S to each Ei(A, S), the output type of observer oi. Formally, this defines T(A)

as the final coalgebra for a functor TA determined by the observers signature, i.e.,

〈νTA , 〈o1, . . . on〉 : νTA −→
Y

i

Ei(A, νTA)〉

Each oi identifies one of such observers whose type is obtained by setting S = T(A)

in the declaration. Therefore, T(A) models νTA .
Dually, an inductive type is declared as

data T(A) ->S = c1:E1(A, S) ->S | . . . | cn:En(A, S) ->S.

Such a declaration introduces type T(A), again parametric on A, as the initial algebra

〈µTA , [c1, . . . , cn] :
X

i

Ei(A, µTA) −→ µTA〉

The basic combinator associated to a coinductive type is unfold, i.e. an anamorph-
ism in a strong setting. In Charity, this is specified by supplying, for each observer

oi the corresponding component pi of the source coalgebra. As expected, strongness
requires that each pi be typed as pi : S × C −→ Ei(A, S), assuming S as the carrier
of the source coalgebra and C the context type. The concrete syntax for an unfold

expression is as follows:

(s,c) => (| s => o1:p1(s,c) | · · · | on:pn(s,c) |)

where s and c denote variables of type S and C, respectively. A ‘degenerate’, i.e.,
non recursive, unfold, is the record combinator which provides a way of populating a
coinductive type by specifying particular values for the observers. The general pattern
for the record combinator is

c => (o1:f1(c) · · · | on:fn(c))

For inductive types the duals of these two combinators are fold and case, re-
spectively. The fold combinator is specified by introducing, for each constructor ci,
the corresponding constructor, di, of the target algebra. Each of them is typed as
di : Ei(A, S) × C −→ S, where C is the type of the context and S the carrier of the
target algebra. The target algebra is, of course, just ‘the either of all such di’. The
concrete syntax for a fold expression is:

(s,c) => {| c1:s1 => d1(s1,c)| · · · | cn:sn => dn(sn,c) |} s

As mentioned above, the record combinator provides a canonical way of specifying
(generalized) elements of a coinductive type. Dually, (generalized) elements of any type
S, having an inductive type as domain of variation, can arise in a simple (non recursive)
way by defining its value on each constructor of the domain. This construction is known
in Charity as the case combinator whose syntax, in the general case, is

(s,c) => { c1s1 => d1(s1,c)| · · · | cnsn => dn(sn,c) } s

Each di is a function from Ei(A, µTA)× C, to the target type. Notice that Ei(A, µTA)
is the domain of constructor ci and C denotes the type of the context. Therefore, the
domain of the case combinator is TA × C. Using strength, context is pushed inside
the TA outermost (coproduct) structure and, therefore, even in this general case, the
combinator is still determined by [d1, . . . , dn].

For each inductive or coinductive type, the map combinator denotes the action on
morphisms, with strength, of the corresponding type functor. Its general format, for
hi : Ai × C −→ A′

i, is:

(t,c) => T { x1 =>h1(x1,c)| · · · | xm =>hm(xm,c) } t

