1,023 research outputs found

    Ionospheric response to the corotating interaction region-driven geomagnetic storm of October 2002

    Get PDF
    Unlike the geomagnetic storms produced by coronal mass ejections (CMEs), the storms generated by corotating interaction regions (CIRs) are not manifested by dramatic enhancements of the ring current. The CIR-driven storms are however capable of producing other phenomena typical for the magnetic storms such as relativistic particle acceleration, enhanced magnetospheric convection and ionospheric heating. This paper examines ionospheric plasma anomalies produced by a CIR-driven storm in the middle- and high-latitude ionosphere with a specific focus on the polar cap region. The moderate magnetic storm which took place on 14–17 October 2002 has been used as an example of the CIR-driven event. Four-dimensional tomographic reconstructions of the ionospheric plasma density using measurements of the total electron content along ray paths of GPS signals allow us to reveal the large-scale structure of storm-induced ionospheric anomalies. The tomographic reconstructions are compared with the data obtained by digital ionosonde located at Eureka station near the geomagnetic north pole. The morphology and dynamics of the observed ionospheric anomalies is compared qualitatively to the ionospheric anomalies produced by major CME-driven storms. It is demonstrated that the CIR-driven storm of October 2002 was able to produce ionospheric anomalies comparable to those produced by CME-driven storms of much greater Dst magnitude. This study represents an important step in linking the tomographic GPS reconstructions with the data from ground-based network of digital ionosondes

    GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm

    Get PDF
    The amplitude and phase scintillation indices are customarily obtained by specialised GPS Ionospheric Scintillation and TEC Monitors (GISTMs) from L1 signal recorded at the rate of 50 Hz. The scintillation indices S[subscript 4] and σ[subscript Φ] are stored in real time from an array of high-rate scintillation receivers of the Canadian High Arctic Ionospheric Network (CHAIN). Ionospheric phase scintillation was observed at high latitudes during a moderate geomagnetic storm (Dst = −61 nT) that was caused by a moderate solar wind plasma stream compounded with the impact of two coronal mass ejections. The most intense phase scintillation (σ[subscript Φ] ~ 1 rad) occurred in the cusp and the polar cap where it was co-located with a strong ionospheric convection, an extended tongue of ionisation and dense polar cap patches that were observed with ionosondes and HF radars. At sub-auroral latitudes, a sub-auroral polarisation stream that was observed by mid-latitude radars was associated with weak scintillation (defined arbitrarily as σ[subscript Φ] 0.1 rad and DPR > 2 mm s[superscript −1], both mapped as a function of magnetic latitude and magnetic local time, are very similar.National Science Foundation (U.S.) (Grant ATM-0856093

    Characteristics of VHF radiowave scintillations over a solar cycle (1983?1993) at a low-latitude station: Waltair (17.7°N, 83.3°E)

    No full text
    International audienceThe characteristics of VHF radiowave scintillations at 244 MHz (FLEETSAT) during a complete solar cycle (1983?93) at a low-latitude station, Waltair (17.7°N, 83.3°E), are presented. The occurrence of night-time scintillations shows equinoctial maxima and summer minima in all the epochs of solar activity, and follows the solar activity. The daytime scintillation occurrence is negatively correlated with the solar activity and shows maximum occurrence during the summer months in a period of low solar activity. The occurrence of night-time scintillations is inhibited during disturbed days of high solar activity and enhanced during low solar activity

    Temporal Dynamics of Preferential Flow to a Subsurface Drain

    Get PDF
    We conducted a sequential tracer leaching study on a 24.4 by 42.7 m field plot to investigate the temporal behavior of chemical movement to a 1.2-m deep field drain during irrigation and subsequent rainfall events over a 14-d period. The herbicides atrazine [6-chloroN-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] along with the conservative tracer Br were applied to a 1-m wide strip, offset 1.5 m laterally from a subsurface drain pipe, immediately before an 11.3-h long, 4.2-mm h−1 irrigation. Three additional conservative tracers, pentafluorobenzoate (PF), o-trifluoromethylbenzoate (TF), and difluorobenzoate (DF) were applied to the strip during the irrigation at 2-h intervals. Breakthrough of Br and the two herbicides occurred within the first 2-h of irrigation, indicating that a fraction of the solute transport was along preferential flow paths. Retardation and attenuation of the herbicides indicated that there was interaction between the chemicals and the soil lining the preferential pathways. The conservative tracers applied during the later stages of irrigation arrived at the subsurface drain much faster than tracers applied earlier. The final tracer, applied 6 h after the start of irrigation (DF), took only 15 min and 1 mm of irrigation water to travel to the subsurface drain. Model simulations using a two-dimensional, convective, and dispersive numerical model without an explicit preferential flow component failed to reproduce Br tracer concentrations in the drain effluent, confirming the importance of preferential flow. This study showed that preferential flow in this soil is not a uniform process during a leaching event

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
    corecore