124 research outputs found
Nonparametric Reconstruction of the Dark Energy Equation of State from Diverse Data Sets
The cause of the accelerated expansion of the Universe poses one of the most
fundamental questions in physics today. In the absence of a compelling theory
to explain the observations, a first task is to develop a robust phenomenology.
If the acceleration is driven by some form of dark energy, then, the
phenomenology is determined by the dark energy equation of state w. A major aim
of ongoing and upcoming cosmological surveys is to measure w and its time
dependence at high accuracy. Since w(z) is not directly accessible to
measurement, powerful reconstruction methods are needed to extract it reliably
from observations. We have recently introduced a new reconstruction method for
w(z) based on Gaussian process modeling. This method can capture nontrivial
time-dependences in w(z) and, most importantly, it yields controlled and
unbaised error estimates. In this paper we extend the method to include a
diverse set of measurements: baryon acoustic oscillations, cosmic microwave
background measurements, and supernova data. We analyze currently available
data sets and present the resulting constraints on w(z), finding that current
observations are in very good agreement with a cosmological constant. In
addition we explore how well our method captures nontrivial behavior of w(z) by
analyzing simulated data assuming high-quality observations from future
surveys. We find that the baryon acoustic oscillation measurements by
themselves already lead to remarkably good reconstruction results and that the
combination of different high-quality probes allows us to reconstruct w(z) very
reliably with small error bounds.Comment: 14 pages, 9 figures, 3 table
Nonparametric Reconstruction of the Dark Energy Equation of State
A basic aim of ongoing and upcoming cosmological surveys is to unravel the
mystery of dark energy. In the absence of a compelling theory to test, a
natural approach is to better characterize the properties of dark energy in
search of clues that can lead to a more fundamental understanding. One way to
view this characterization is the improved determination of the
redshift-dependence of the dark energy equation of state parameter, w(z). To do
this requires a robust and bias-free method for reconstructing w(z) from data
that does not rely on restrictive expansion schemes or assumed functional forms
for w(z). We present a new nonparametric reconstruction method that solves for
w(z) as a statistical inverse problem, based on a Gaussian Process
representation. This method reliably captures nontrivial behavior of w(z) and
provides controlled error bounds. We demonstrate the power of the method on
different sets of simulated supernova data; the approach can be easily extended
to include diverse cosmological probes.Comment: 16 pages, 11 figures, accepted for publication in Physical Review
Sulfolipid-1 Biosynthesis Restricts Mycobacterium tuberculosis Growth in Human Macrophages
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly evolved human pathogen characterized by its formidable cell wall. Many unique lipids and glycolipids from the Mtb cell wall are thought to be virulence factors that mediate host-pathogen interactions. An intriguing example is Sulfolipid-1 (SL-1), a sulfated glycolipid that has been implicated in Mtb pathogenesis, although no direct role for SL-1 in virulence has been established. Previously, we described the biochemical activity of the sulfotransferase Stf0 that initiates SL-1 biosynthesis. Here we show that a stf0-deletion mutant exhibits augmented survival in human but not murine macrophages, suggesting that SL-1 negatively regulates the intracellular growth of Mtb in a species-specific manner. Furthermore, we demonstrate that SL-1 plays a role in mediating the susceptibility of Mtb to a human cationic antimicrobial peptide in vitro, despite being dispensable for maintaining overall cell envelope integrity. Thus, we hypothesize that the species-specific phenotype of the stf0 mutant is reflective of differences in antimycobacterial effector mechanisms of macrophages
MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars
We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1-100μm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect
The Promoter of Rv0560c Is Induced by Salicylate and Structurally-Related Compounds in Mycobacterium tuberculosis
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. PRv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of PRv0560c were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The −10 and −35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the −35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter
Increased Systemic Th17 Cytokines Are Associated with Diastolic Dysfunction in Children and Adolescents with Diabetic Ketoacidosis
Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with T1DM, but its pathogenesis is not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in 17 children with T1DM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured cytokines/chemokines were elevated at 6–12 hours into treatment of DKA compared to values after DKA resolution. Eight patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute DKA
- …