1,053 research outputs found
Avoiding deontic explosion by contextually restricting aggregation
In this paper, we present an adaptive logic for deontic conflicts, called P2.1(r), that is based on Goble's logic SDLaPe-a bimodal extension of Goble's logic P that invalidates aggregation for all prima facie obligations. The logic P2.1(r) has several advantages with respect to SDLaPe. For consistent sets of obligations it yields the same results as Standard Deontic Logic and for inconsistent sets of obligations, it validates aggregation "as much as possible". It thus leads to a richer consequence set than SDLaPe. The logic P2.1(r) avoids Goble's criticisms against other non-adjunctive systems of deontic logic. Moreover, it can handle all the 'toy examples' from the literature as well as more complex ones
S-OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid
The Grid aims to support secure, flexible and coordinated resource sharing through providing a middleware platform for advanced distributing computing. Consequently, the Grid’s infrastructural machinery aims to allow collections of any kind of resources—computing, storage, data sets, digital libraries, scientific instruments, people, etc—to easily form Virtual Organisations (VOs) that cross organisational boundaries in order to work together to solve a problem. A Grid depends on understanding the available resources, their capabilities, how to assemble them and how to best exploit them. Thus Grid middleware and the Grid applications they support thrive on the metadata that describes resources in all their forms, the VOs, the policies that drive then and so on, together with the knowledge to apply that metadata intelligently
Bose-Einstein condensation as symmetry breaking in compact curved spacetimes
We examine Bose-Einstein condensation as a form of symmetry breaking in the
specific model of the Einstein static universe. We show that symmetry breaking
never occursin the sense that the chemical potential never reaches its
critical value.This leads us to some statements about spaces of finite volume
in general. In an appendix we clarify the relationship between the standard
statistical mechanical approaches and the field theory method using zeta
functions.Comment: Revtex, 25 pages, 3 figures, uses EPSF.sty. To be published in Phys.
Rev.
Dimensionality effects in restricted bosonic and fermionic systems
The phenomenon of Bose-like condensation, the continuous change of the
dimensionality of the particle distribution as a consequence of freezing out of
one or more degrees of freedom in the low particle density limit, is
investigated theoretically in the case of closed systems of massive bosons and
fermions, described by general single-particle hamiltonians. This phenomenon is
similar for both types of particles and, for some energy spectra, exhibits
features specific to multiple-step Bose-Einstein condensation, for instance the
appearance of maxima in the specific heat.
In the case of fermions, as the particle density increases, another
phenomenon is also observed. For certain types of single particle hamiltonians,
the specific heat is approaching asymptotically a divergent behavior at zero
temperature, as the Fermi energy is converging towards any
value from an infinite discrete set of energies: . If
, for any i, the specific heat is divergent at T=0
just in infinite systems, whereas for any finite system the specific heat
approaches zero at low enough temperatures. The results are particularized for
particles trapped inside parallelepipedic boxes and harmonic potentials.
PACS numbers: 05.30.Ch, 64.90.+b, 05.30.Fk, 05.30.JpComment: 7 pages, 3 figures (included
Archiving Software Surrogates on the Web for Future Reference
Software has long been established as an essential aspect of the scientific
process in mathematics and other disciplines. However, reliably referencing
software in scientific publications is still challenging for various reasons. A
crucial factor is that software dynamics with temporal versions or states are
difficult to capture over time. We propose to archive and reference surrogates
instead, which can be found on the Web and reflect the actual software to a
remarkable extent. Our study shows that about a half of the webpages of
software are already archived with almost all of them including some kind of
documentation.Comment: TPDL 2016, Hannover, German
Photon-Photon Scattering, Pion Polarizability and Chiral Symmetry
Recent attempts to detect the pion polarizability via analysis of
measurements are examined. The connection
between calculations based on dispersion relations and on chiral perturbation
theory is established by matching the low energy chiral amplitude with that
given by a full dispersive treatment. Using the values for the polarizability
required by chiral symmetry, predicted and experimental cross sections are
shown to be in agreement.Comment: 21 pages(+10 figures available on request), LATEX, UMHEP-38
A dynamic logic for every season
This paper introduces a method to build dynamic logics with a graded semantics. The construction is parametrized by a structure to support both the spaces of truth and of the domain of computations. Possible instantiations of the method range from classical assertional) dynamic logic to less common graded logics suitable to deal with programs whose transitional semantics exhibits fuzzy or weighted behaviour.This leads to the systematic derivation of program logics tailored to specific program classes
BBMS + + – basic bioinformatics meta-searcher
In this paper we present a Basic Bioinformatics Meta-searcher (BBMS), a web-based service aiming to simplify and integrate biological data searching through selected biological databases. BBMS facilitates biological data searching enabling multiple sources transparently, increasing research productivity as it avoids time consuming learning and parameterization of different search engines. As a complementary service, BBMS provides insight and links to common online bioinformatics tools. Users’ feedback when evaluating BBMS in terms of usability, usefulness and efficiency was very positive
Thermodynamic aspects of materials' hardness: prediction of novel superhard high-pressure phases
In the present work we have proposed the method that allows one to easily
estimate hardness and bulk modulus of known or hypothetical solid phases from
the data on Gibbs energy of atomization of the elements and corresponding
covalent radii. It has been shown that hardness and bulk moduli of compounds
strongly correlate with their thermodynamic and structural properties. The
proposed method may be used for a large number of compounds with various types
of chemical bonding and structures; moreover, the temperature dependence of
hardness may be calculated, that has been performed for diamond and cubic boron
nitride. The correctness of this approach has been shown for the recently
synthesized superhard diamond-like BC5. It has been predicted that the
hypothetical forms of B2O3, diamond-like boron, BCx and COx, which could be
synthesized at high pressures and temperatures, should have extreme hardness
Tradeoffs in jet inlet design: a historical perspective
The design of the inlet(s) is one of the most demanding tasks of the development process of any gas turbine-powered aircraft. This is mainly due to the multi-objective and multidisciplinary nature of the exercise. The solution is generally a compromise between a number of conflicting goals and these conflicts are the subject of the present paper. We look into how these design tradeoffs have been reflected in the actual inlet designs over the years and how the emphasis has shifted from one driver to another. We also review some of the relevant developments of the jet age in aerodynamics and design and manufacturing technology and we examine how they have influenced and informed inlet design decision
- …
