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Abstract. In this paper, we present an adaptive logic for deontic con-
flicts, called P2.1r, that is based on Goble’s logic SDLaPe—a bimodal
extension of Goble’s logic P that invalidates aggregation for all prima
facie obligations. The logic P2.1r has several advantages with respect
to SDLaPe. For consistent sets of obligations it yields the same results
as Standard Deontic Logic and for inconsistent sets of obligations, it
validates aggregation “as much as possible”. It thus leads to a richer
consequence set than SDLaPe. The logic P2.1r avoids Goble’s criti-
cisms against other non-adjunctive systems of deontic logic. Moreover,
it can handle all the ‘toy examples’ from the literature as well as more
complex ones.

Key words: conflict-tolerant deontic logic, non-adjunctive deontic logic,
deontic explosion, defeasible deontic reasoning, adaptive logic

1 Introduction

Over the last two decades a plethora of deontic logics have been proposed for
which deontic explosion (to derive OB from OA and O¬A) is not valid. A large
number of these systems are obtained by rejecting or restricting the aggregation
principle—from OA and OB to derive O(A ∧B).1

Given the way in which humans build up their norms, it seems realistic to
suppose that they adhere to norms deriving from conflicting normative systems.
Non-adjunctive deontic logics are especially suited to handle such cases, since
they do not allow to derive O(A ∧ ¬A) from OA and O¬A. This makes good
sense: the observation that two normative systems are in conflict, should not
lead to the conclusion that there is a normative system that forces one to do the
impossible. Thus, the intuitive principle “Ought implies Can” can be preserved.

In [6, p. 466], Lou Goble stated that giving up aggregation is “perhaps the
most natural suggestion for avoiding deontic explosion”. In several papers Goble

? Research for this paper was supported by subventions from Ghent University and
from the Research Foundation – Flanders (FWO - Vlaanderen). The authors are
indebted to the three anonymous referees for valuable comments and suggestions.

1 See, for instance, [1], [2], [3], [4], [5].



advocated the use of one particular such logic, namely the logic P [2], [3], [4].
P is a very well-behaved system and has a natural interpretation in a Kripke-
like semantics.2 It has moreover a nice axiomatization and avoids any kind of
explosion when applied to conflicting obligations.3

Still, the logic P has a serious drawback: it is too weak, especially when
applied to obligations that are mutually compatible. For instance, in the famous
Horty example [7, p. 37], Smith is confronted with two obligations: (i) he ought
to fight in the army or perform alternative service to his country ((O(F ∨ S))
and (ii) he is not permitted to fight in the army, or what comes to the same,
he ought not the fight in the army (O¬F ). As there is no conflict among these
obligations, it seems reasonable to infer OS. Nevertheless, the logic P (as well
as other non-adjunctive deontic logics) does not enable one to do so. In other
words, simply invalidating aggregation results in a logic that is too weak.

In [2], Goble extends his logic P to the bimodal logic SDLaPe. The language
of the latter contains two sets of deontic operators: the operator Oe, which is the
one from P, and the new operator Oa. (The duals Pe and Pa are defined in the
usual way.) Goble’s motivation for this additional ought-operator is that OeA
expresses that, under some set of norms, A ought to be case, but cannot express
that A holds under any standard. The Oa-operator gives one exactly this. This
results in a greater expressive power and also in different ways for formalizing
conflicts (see Section 3). Another reading of the operators is that OeA stands
for the prima facie obligation to do A and that OaA stands for the actual (“all-
things-considered”) obligation to do A. In line with what is common, we shall
accept the idea that a prima facie obligation functions as an actual obligation,
in case it is not conflicted by other obligations.

The logic SDLaPe behaves exactly like Standard Deontic Logic (SDL) for
the Oa-operator and like P for the Oe-operator. This seems to give the logic
some advantages over P. Given the proper formalization, one can make sure
that for all consistent ‘parts’ of the premises, the same results are obtained
as with SDL. For instance, in the Smith example, formalizing the premises as
Oa(F ∨ S) and Oa¬F ensures that OaS is derivable. This solution presupposes,
however, that one knows in advance which premises can be safely formalized
with the Oa-operator. But that seems like putting the cart before the horse. In
complex cases, it requires reasoning to localize the conflicts and this reasoning
now seems to be outside the scope of logic. Moreover, formalizing the premises
in the wrong way (because some conflicts were not detected), may still lead to
explosion. One could, of course, play it safe and formalize all obligations with
the Oe-operator, but then the inferential power reduces to that of P and we are
back to square one.

In this paper, we shall present a logic that leads to exactly the same conse-
quence set as SDL for sets of premises that are conflict-free. For sets of premises

2 The idea behind this semantics will be spelled out in Section 4. Goble also proposed
a preferential semantics for P in [3], and a neighbourhood semantics in [2].

3 As we shall shortly see, other kinds of deontic conflicts, such as those between obli-
gations and permissions, do lead to explosion in P.



that are not conflict-free (but that have P-models), the set of consequences is
“as rich as possible”, without any form of deontic explosion being validated.

One of the basic ideas behind P2.1r is that Oe-obligations are interpreted
“as much as possible” as Oa-obligations (that is, unless and until the premises
explicitly prevent this). Thus, prima facie obligations are interpreted as actual
obligations, unless and until the context and the logic stops one from doing so.
As is clear from the above, all classical operations can be applied to actual obli-
gations (aggregation, disjunctive syllogism, ...). Which prima facie obligations
are interpreted as actual obligations and which not is solely dependent on formal
grounds. Note also that the logic adapts itself to the set of premises and localizes
itself the conflicts. No interference of the user is required for this.

The logic P2.1r is an adaptive logic4 and is based on Gobles SDLaPe. The
logic P2.1r is non-monotonic and its proof theory is dynamical (conclusions
derived at some stage of a proof may be rejected at a later stage),5 but is sound
and complete with respect to a (static) semantics. We shall argue that Goble’s
objections from [6] against non-adjunctive approaches do not apply to P2.1r

and show that P2.1r leads to the desired results for the Smith example and for
more complex ones than that.

2 Some Preliminaries

We shall use L to refer to the standard language of classical propositional logic
and S to refer to the set of schematic letters. LM is obtained from L by extending
it with the modal operators Oe, Oa, Pe and Pa. Let “¬”, “∨”, “Oe” and “Oa”
be primitive, the other logical constants being defined by

D1 A ⊃ B =df ¬A ∨B
D2 A ∧B =df ¬(¬A ∨ ¬B)
D3 A ≡ B =df (A ⊃ B) ∧ (B ⊃ A)
D4 PeA =df ¬Oe¬A
D5 PaA =df ¬Oa¬A

Where W is the set of all well-formed formulas of L, the set of well-formed
formulas of LM is defined as the smallest set WM that satisfies the following
conditions:

(i) If A ∈ W then A ∈ WM

(ii) If A ∈ W then OeA, OaA, PeA, PaA ∈ WM

(iii) If A ∈ WM then ¬A ∈ WM

(iv) If A,B ∈ WM then A ∨B,A ∧B,A ⊃ B,A ≡ B ∈ WM

4 See [8] for an introduction to adaptive logics and [9] for an overview of their metathe-
oretic properties.

5 The stage of a proof refers to the set of lines that occur in the proof up to a certain
line. Thus, “stage 14 of the proof” refers to the first fourteen lines in the proof.



We shall use Wa to refer to the set of atoms (schematic letters and their nega-
tions). As is clear from the definition ofWM , we restrict ourselves to first degree
modalities. This simplifies the characterization of the logic and does not cause
too much harm—nearly all papers on deontic conflicts constrain themselves to
first degree modalities (either explicitly of implicitly).

For reasons of readability, and because we prefer to name the adaptive logic
based on SDLaPe in such a way that the connection is clear, we shall from now
on use the name P2 to refer to SDLaPe. The 1 in P2.1r indicates that P2.1r

is only one member of a larger family of logics based on P2, and the “r” refers
to the adaptive strategy.6

There is one aspect in which we shall differ in our presentation of the logic
P2. Goble is only interested in the theorems of his logic, not in a semantic
consequence relation. As we are mainly interested in the consequence relation,
we shall modify his semantics in such a way that we introduce a real world in the
models. This will also make it easier to explain how the adaptive logic works.

3 A More General Approach to Normative Conflicts

There is a strong tendency in the literature to restrict deontic conflicts to moral
conflicts or moral dilemmas. In [10], [11] and [12], for instance, systems of deontic
logic are presented that focus exclusively on moral conflicts. In this paper, we
shall not require that the normative statements are moral (they can come from
legal codes, moral codes, traffic regulations, promises, . . . ).

Most authors moreover focus almost exclusively on cases where, for some A,
both OA and O¬A hold. However, a non-explosive deontic logic should be able
to account for other types of conflicts, such as, for instance, conflicts between
an obligation and a permission. Suppose, for instance, that Yilmaz ought not to
drink alcohol according to his religious beliefs. However, according to the laws of
his country, he is permitted to drink alcohol. If one would simply formalize this
conflict in the language of P as O¬A ∧ PA and apply P to it, explosion would
follow, just as in SDL. However, a more natural formalization can be obtained
in the language of P2. What the first premise comes to is that Yilmaz has a
prima facie obligation not to drink alcohol (Oe¬A). The second premise entails
that it is not an actual obligation not to drink alcohol: there are normative
systems that allow one to drink alcohol. This is why we would formalize the
second premise as ¬Oa¬A, or what comes to the same, as PaA. Applying P2 or
P2.1r to Oe¬A ∧ PaA does not result in explosion.

We shall also not presuppose that all conflicts between obligations are ‘direct
conflicts’ (that is, conflicts of the form OA ∧ O¬A). One should, for instance,
also allow for deontic conflicts that involve more than two obligations, such as
OA, OB, and O(¬A ∨ ¬B) (see below for a discussion of this kind of conflicts).
Remarkably, hardly any attention was paid to such conflicts (some exceptions

6 The adaptive strategy used for P2.1r, is the Reliability Strategy. What an adaptive
strategy comes to will become clear below.



where the possibility of conflicts between more than two obligations is considered
are [13], [14], and [15]).

Furthermore, we shall not presuppose that all normative conflicts can be
reduced to direct conflicts. The latter seems to be the position of Goble. On the
one hand, he allows for situations where two obligations are jointly incompatible
(OA,OB and ` ¬(A∧B) hold). On the other hand, he considers situations where
two obligations are jointly impossible (OA,OB and ¬♦(A∧B) hold). However,
he argues that both cases are reducible to situations where two direct conflicts
hold: OA ∧O¬A and OB ∧O¬B. For this reduction, he relies on the following
assumptions (see [6, p. 462]):

RM If ` A ⊃ B, then ` OA ⊃ OB
NM ` ¬♦(A ∧ ¬B) ⊃ (OA ⊃ OB)

The reduction Goble has in mind is typically applied to cases where two
obligations are jointly incompatible or jointly impossible. In the case of the
drowning twins, for example, one has to imagine a situation where two identical
twins are drowning and the situation is such that one can save either of them,
but one cannot save both of them.7 In Goble’s view, the impossibility to save
both, reduces the normative conflict to two direct conflicts: “one ought to save
the first twin and one ought not to save the first twin” and analogously for the
second twin.

In our view, this kind of reduction is not the most natural formalization of
the situation and causes the loss of crucial information. One loses, for instance,
the information that there is a link between saving or not saving the first twin
and saving or not saving the second one. One also loses the information that
there are no possible worlds in which both twins are saved. This is why, where
T1, respectively T2, stands for saving the first twin, respectively the second twin,
we would formalize the twin example as Γ1 = {OeT1, OeT2, Oa¬(T1∧T2)}. The
all-things-considered obligation in Γ1 is intended to capture the idea that it is
impossible to save both twins (that is, that there is no accessible world in which
both are saved).

Admittedly, the two direct conflicts that Goble starts from are derivable by
P2.1r from Γ1, but our formalization is stronger (one cannot derive the members
of Γ1 from Goble’s formalization), and it retains the information that is otherwise
lost.

In our view, there are also examples of normative conflicts that cannot be
reduced to direct conflicts. As an example consider the situation where Bob, at
different moments in time, promised his two best friends, John and Peter, to
invite them to his birthday party. However, he also promised his girlfriend not
to invite them both. (John and Peter are known to quarrel over almost anything
and Bob’s girlfriend is afraid that this may put a damper on the party). In this
case, Bob is facing three prima facie obligations

7 As a more realistic example, one may think of the kind of heartbreaking decision
some parents have to make in the case of Siamese twins.



(1) he has a prima facie obligation to invite John — OeIj
(2) he has a prima facie obligation to invite Peter — OeIp
(3) he has a prima facie obligation not to invite both Peter and John —

Oe¬(Ij ∧ Ip)

Note that (1) and (2) are jointly compatible and jointly possible (analogously
for (1) and (3) and for (2) and (3)). Nothing prevents Bob from inviting both his
friends, except for the promise that he made to his girlfriend. As (1) and (2) are
jointly possible, no direct conflict of the form OA ∧O¬A is derivable by P2.1r

from (1)–(3), even if one adheres to NM.
Some readers might argue that there is an incompatibility: it is impossible

to obey to all three obligations at the same time: ¬♦((Ij ∧ Ip) ∧ ¬(Ij ∧ Ip)).
However, in order to derive the direct conflict Oe(Ij ∧ Ip) ∧ Oe¬(Ij ∧ Ip) (in
view of NM), one first needs Oe(Ij ∧ Ip), and this is not derivable by P2 from
(1) and (2). Critical readers might continue that we can easily reformulate our
premises in such a way that a direct conflict becomes derivable (for instance, by
replacing (1) and (2) by Oe(Ij ∧ Ip). However, this is exactly the kind of move
that (throughout the paper), we want to avoid. We want to take sets of premises
at face value and let the context and the logic decide what follows from what,
without interferences (or ‘preparations’) from the part of the reasoner.

When discussing the formalization of normative conflicts, one may also think
of Horty’s visiting parents example [16, p. 581]. Suppose that you have an obliga-
tion to visit both your own and your spouse’s parents during the holiday season,
and that, because they live in separate parts of the country, it is not possible
to visit both pairs. Whichever pair you eventually decide on, you should no-
tify them of your visit. Let V1 be that you visit your own parents, N1 that
you notify your own parents of your visit, and let N2 and V2 be the respec-
tive propositions for your spouse’s parents. Horty represents these obligations as
Γ2 = {Oe(V1 ∧N1), Oe(V2 ∧N2), Oe¬(V1 ∧ V2)}.8

Horty uses this example to make a case against consistent aggregation in
favour of consistent consequent aggregation. According to the former, but not
the latter Oe(N1 ∧ N2) is derivable from the premises. According to Horty the
derivability of Oe(N1 ∧ N2) is incorrect: although it is possible to notify both
pairs of parents that you are planning to visit them, this is not what you ought
to do in this situation.

As will become clear below, Oa(N1∧N2) is derivable by P2.1r from Γ2. Is this
a problem for our logic? We believe it is not. In our view, there is nothing wrong
with the outcome, it is the formalization that is mistaken (for this particular
example). This requires some explanation.

Horty uses a truth-functional conjunction to formalize the first two premises,
even though it is clear that there is a connection between visiting one specific
pair of parents and notifying that pair of parents of your visit. Even Horty, in
his intuitive reading, seems to acknowledge that there is such a connection. In
his words:
8 Horty takes these to be your prima facie obligations, hence we have formalized them

with the Oe-operator.



Your prima facie obligations can then be represented through the two
imperatives [. . . ] telling us that you should notify and then visit your
parents, but also that you should notify and then visit your spouse’s
parents. [16, p. 581] (our italics)

So, Horty clearly sees at least a temporal connection between the two conjuncts,
but this is not captured by the truth-functional conjunction. (To see that Horty
has something more in mind than is captured by his formalization, note that
the sentence “you should notify your parents and then visit them” has a differ-
ent meaning than the sentence “you should visit your parents and then notify
them”).

But there is something worse, there is also a conditional connection be-
tween the two conjuncts: the obligation to notify someone holds only in view
of the obligation to visit this person. Also this is lost in Horty’s formaliza-
tion. A formalization that retains this information is {OeV1, OeV2, Oe(V1 ⊃
N1), Oe(V2 ⊃ N2), Oe¬(V1 ∧ V2)}. or, if you prefer, {OeV1, OeV2, V1 ⊃
O1N1, V2 ⊃ OeN2, Oe¬(V1 ∧ V2)}.9 If Horty’s example is formalized in ei-
ther of these ways, one no longer obtains the unwanted consequence that one
has an actual obligation to notify both pairs of parents.

There is another way to plead for our case. Horty’s way of formalizing is
adequate only for actions that are independent from one another. Suppose, for
instance, that, on the one hand, you have the obligation to attend your daughter’s
wedding and to buy her a suitable wedding gift and, on the other hand, you have
the obligation to attend your son’s wedding and to buy him a suitable wedding
gift. As both your children decided to marry on the same day in different parts
of the country you cannot attend both weddings. Still, you can buy a wedding
gift for both of them, and this seems the proper thing to do. So, where Ad,
respectively As, stands for attending your daughters wedding, respectively your
son’s wedding, and Gd, respectively Gs, stands for buying a wedding gift for your
daughter, respectively for your son, there is nothing wrong with the Horty-like
formalization {Oe(Ad ∧ Gd), Oe(As ∧ Gs), Oe¬(Ad ∧ As)}, and there is also
nothing wrong with the fact that the actual obligation Oa(Gd ∧ Gs) is P2.1r-
derivable in this case.

4 Rejecting Aggregation: The Logic P2

Let us now turn to the logic that will form the basis of our adaptive logic. The
idea behind P2 is actually very simple: in a Kripke-like semantics, aggregation
is invalidated by considering a set of accessibility relations instead of only one.
Intuitively, each accessibility relation can be thought of as corresponding to one
of the normative systems an agent adheres to.

9 A similar formalization is found in the literature on the Chisholm paradox, where
sentences of the form “It ought to be that if X visits Y then X tells Y (s)he is coming”
are typically formalized as either O(Vy ⊃ Ny) or Vy ⊃ ONy (see, for instance, [13]).



A P2-model M is a quadruple 〈W,R, v, w0〉 where W is a set of possible
worlds,R is a non-empty set of serial accessibility relations R on W , v : S×W →
{0, 1} is an assignment function, and w0 ∈ W is the real world. The valuation
vM defined by the model M is characterized by:

C1 where A ∈ S, vM (A,w) = v(A,w)
C2 vM (¬A,w) = 1 iff vM (A,w) = 0
C3 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
C4 vM (OeA,w) = 1 iff, for some R ∈ R, vM (A,w′) = 1 for all w′ such that

Rww′

C5 vM (OaA,w) = 1 iff, for every R ∈ R, vM (A,w′) = 1 for all w′ such that
Rww′

A P2-model M verifies A iff vM (A,w0) = 1, �P2 A iff all P2-models verify A,
and Γ �P2 A iff all P2-models of Γ verify A.

P2 is axiomatized by extending an axiomatization of classical propositional
logic with the following axioms and rules:

Ka Oa(A ⊃ B) ⊃ (OaA ⊃ OaB)
Da OaA ⊃ ¬Oa¬A
RNa if ` A then ` OaA
RMe if ` A ⊃ B then ` OeA ⊃ OeB
Ne if ` A then ` OeA
Pe if ` A then ` ¬Oe¬A
Kae Oa(A ⊃ B) ⊃ (OeA ⊃ OeB)

The first three postulates deliver SDL for Oa and the next three deliver P
for Oe.10 The last axiom links the two operators.

As was mentioned in the introduction, P2 has several nice properties. But
the fact remains that it is a very poor logic, and that its inferential strength can
only be increased by making the correct ‘guesses’ on what the unproblematic
premises are. At some point, Goble no longer considered P2 as the best solution
for a conflict-tolerant deontic logic. However, given the attractiveness of a non-
adjunctive approach to deontic conflicts, he and others made several attempts
to restrict aggregation rather than to invalidate it.

5 Restricting Aggregation

A detailed discussion of the main attempts to restrict aggregation can be found
in [6, pp. 467-473]. Here, we shall only briefly mention some of them.

The first one is that of consistent aggregation or

CAND If 6` A ⊃ ¬B then ` (OA ∧OB) ⊃ O(A ∧B)

10 P is as P2, except that there is only one O-operator and that obviously C5 does not
hold in it.



Although this suggestion appears natural, it is much too strong. In the presence
of a normative conflict OA∧O¬A and some random formula B such that 6` ¬B,
CAND allows one to derive O(A ∧ (¬A ∨ B)), from which follows OB. Hence
CAND validates the following contra-intuitive and explosion-like principle:

DEX-1 If 6` ¬B then ` (OA ∧O¬A) ⊃ OB

The second form of restricted aggregation is that of permitted aggregation or

PAND ` P (A ∧B) ⊃ ((OA ∧OB) ⊃ O(A ∧B))

Instead of allowing aggregation for obligations that are jointly compatible (as
is the case for CAND), this alternative allows aggregation for obligations that
are jointly permissible. Unfortunately, PAND suffers from similar problems as
CAND. Whereas in the case of CAND a variant of deontic explosion follows
from a normative conflict OA ∧ O¬A in the presence of some formula ¬B that
is logically contingent, in the case of PAND a variant of explosion follows from
OA ∧O¬A in the presence of some formula B such that B is permitted. To see
why, note that PB ≡ P ((A ∨ B) ∧ (¬A ∨ B)), that from OA follows O(A ∨ B)
and that from O¬A follows O(¬A ∨ B). Hence, by PAND, we obtain O((A ∨
B) ∧ (¬A ∨B)) (which is equivalent to OB) from OA ∧O¬A. This yields

DEX-2 ` (OA ∧O¬A) ⊃ (PB ⊃ OB)

More generally, Goble argues that any restricted aggregation rule of the form:

RAND If Cond(A ∧B) then ` (OA ∧OB) ⊃ O(A ∧B)

where Cond(A∧B) denotes a certain restriction over A and B, is bound to lead
to a related type of deontic explosion:

DEX-gen ` Cond(B) ⊃ ((OA ∧O¬A) ⊃ OB)

That is, all propositions that satisfy Cond will become obligatory as soon as a
deontic conflict arises. Hence we should look for some way to restrict aggregation
that is not based solely on the behaviour of the two obligations that one wants
to aggregate, but on the behaviour of the whole set of obligations and their
consequences. Our proposal meets this requirement, and thus overcomes the
problems faced by restricted aggregation.

Apart from the fact that constrained aggregation leads to some form of explo-
sion, we can also provide a more philosophical argument against these systems.
It seems strange to assume that the reasoner should add formulas of the form
Cond(A∧B), in order to obtain O(A∧B) from OA and OB. If we know before-
hand which obligations may be aggregated safely, there is no genuine problem.
An important feature of the logic P2.1r is that it does not presuppose such
knowledge: it is the logic itself that localizes which obligations can be aggre-
gated, without the need to add any new premise.



Goble discusses two more classes of solutions to the aggregation-problem [6,
pp. 469-471]. The first is “constrained consistent aggregation”, where the aggre-
gation is restricted to consistent subsets of the premise set Γ (see [16] for an
update of this proposal). A major drawback of this system is that the set of
derivable obligations depends largely on the way the premises are formalized:
equivalent premise sets can yield different results. Moreover, this approach can-
not handle more complex situations like the Johnson example, that we shall
present in Section 7.

The second class of solutions consists of bimodal systems, where aggregation
is restricted to obligations for one of the two ought-operators—see, for instance,
[17] and [15]. Goble argues convincingly that, although these logics avoid explo-
sion, they seem far-fetched from the viewpoint of everyday deontic reasoning.

6 Desiderata for a Conflict-Tolerant Deontic Logic

The discussion in the previous sections gives us several requirements for an ad-
equate logic for deontic conflicts. Evidently, no form of deontic explosion should
be validated. For sets of premises that are conflict-free, the logic should lead to
the same results as SDL and for sets of premises that contain conflicts it should
be “as rich as possible”. The logic should also not presuppose that one knows in
advance which obligations behave consistently and it should not be sensitive to
the accidental formulation of the premises. Finally, it should be able to handle
other normative conflicts than OA ∧O¬A.

The logic that we shall present in the next two sections satisfies all these
requirements.

7 Intuitive Characterization of P2.1r

The logic P2.1r is an adaptive extension of the logic P2. The logic P2 con-
stitutes the stable part of P2.1r: anything that is P2-derivable from a premise
set is unconditionally derivable in P2.1r. In addition to this, it is allowed that
Oe-obligations are interpreted “as much as possible” as Oa-obligations. A first
approximation of this idea is that it is allowed that OaA is derived from OeA
unless OeA ∧ ¬OaA is P2-derivable from the premises. A formula of the form
OeA∧¬OaA will be called an abnormality—it is a formula that blocks a desired
inference (in this case the transition from OeA to OaA). We shall see below that
several restrictions are needed with respect to the abnormalities and that we
also need a more sophisticated notion of “as much as possible”. But let us first
illustrate the main ideas by means of an example.

Suppose that Johnson faces the following three obligations:

O1 he ought to pay taxes and fight in the army or perform alternative service
to his country — Oe(T ∧ (F ∨ S))

O2 he ought not to pay taxes and not fight in the army — Oe(¬T ∧ ¬F )
O3 he ought to pay taxes or donate to charity — Oe(T ∨ C)



In order to localize the conflicts and to see what follows, we start a P2.1r-
proof by entering first the premises:

1 Oe(T ∧ (F ∨ S)) PREM ∅
2 Oe(¬T ∧ ¬F ) PREM ∅
3 Oe(T ∨ C) PREM ∅

The only unusual element in this proof is the last column. This element is called
the condition of the line at issue and is always empty in the case of premises.
Its function will become clear below.

Suppose that we now continue the proof as follows:

4 Oe(F ∨ S) 1; RU ∅
5 Oe¬F 2; RU ∅
6 OeT 1; RU ∅
7 Oe¬T 2; RU ∅

Each of these formulas follows by P2 from the premises and hence can be un-
conditionally derived in the proof. The rule RU is a generic rule that allows one
to derive any formula that is P2-derivable.

In view of these formulas, it seems intuitively clear that we want to derive
OeS and even OaS from Oe(F ∨S) and Oe¬F , but that we do not want to derive
OeC or OaC from Oe(T ∨ C) and Oe¬T . The reason is that there is clearly a
conflict in the second case (see lines 6 and 7), but not in the first case. We shall
see below that P2.1r gives us precisely this outcome. But first we need to discuss
some small complications.

A first complication is that from some sets of conflicting deontic statements
no formula of the form OeA ∧ ¬OaA is P2-derivable. For instance, from the set
of premises {Oep, Oeq, Oe¬(p∧ q)}, no single formula of the form OeA∧¬OaA
is derivable, but (Oep∧¬Oap)∨ (Oeq ∧¬Oaq) is. It is in view of such cases that
the expression “to interpret a set of premises as normally as possible” becomes
ambiguous. It is disambiguated by the adaptive strategy. In the case of P2.1r, the
strategy is Reliability.11 To explain this strategy, we first need some definitions.

Where ∆ is a finite set of abnormalities, the disjunction
∨

(∆) will be called
a Dab-formula and will be written as Dab(∆). A Dab-formula Dab(∆) will be
called a minimal Dab-formula at stage s of a proof, if, at that stage of the proof,
no Dab(∆′) is derived, such that ∆′ ⊂ ∆.

What the Reliability Strategy comes to is that, whenever a minimal Dab-
formula is unconditionally derived in the proof at a certain stage, then all dis-
juncts that occur in that Dab-formula are considered as behaving abnormally
(or as unreliable). As we shall see below, the unreliable formulas at a stage s de-
termine which lines (if any) should be marked. Intuitively, a line is marked if its
condition is violated. A condition is violated at a certain stage if at that stage its
11 The two most common strategies in adaptive logics are the Reliability Strategy and

the Minimal Abnormality Strategy—the former is a bit more cautious than the
latter—see [9].



condition contains an unreliable formula. Formulas that occur on marked lines
are not considered as derived in the proof.

The second complication is that we need some restriction on the form of the
abnormalities. Without such restriction, we would obtain a so-called flip-flop
logic: a logic that behaves exactly like SDL for consistent sets of premises, but
like P for inconsistent sets of premises. The reason for this is easily demonstrated
by means of the following example. Consider Γ3 = {Oep, Oe¬p, Oeq}. As there
is clearly no conflict with respect to Oeq, Oaq should be P2.1r-derivable from
Γ3. However, the disjunction (Oeq ∧ ¬Oaq) ∨ (Oe(¬p ∨ ¬q) ∧ ¬Oa(¬p ∨ ¬q))
is P2-derivable from Γ3, whereas neither of its disjuncts is. Hence, in view of
the Reliability Strategy, Oeq ∧¬Oaq would be considered as unreliable and this
would block the desired inference from Oeq to Oaq. This is why we shall only
consider those formulas of the form OeA∧¬OaA as abnormalities where A is an
atom. This brings us to the third and last complication.

If we would restrict the abnormalities to the set {OeA ∧ ¬OaA | A ∈ Wa},
we would obtain an adaptive logic that is too poor. It would, for instance, not
be possible to infer Oa(p ∨ q) from Oe(p ∨ q). This brings us to the question
when we should consider it as an abnormality that an obligation of the form
Oe(A1∨. . .∨An) (for n ≥ 2) cannot be generalized to Oa(A1∨. . .∨An). A natural
answer to this question is that it counts as an abnormality when Oe(A1∨. . .∨An)
is true whereas Oa(A1 ∨ . . . ∨An) is false, unless Oe(A1 ∨ . . . ∨An) is obtained
from a ‘shorter’ obligation that behaves abnormally. Thus, in the case of Γ3, it
would not count as an abnormality that Oe(p ∨ r) (which is P2-derivable from
Γ ) cannot be generalized to Oa(p ∨ r) (in view of the conflict between Oep and
Oe¬p), but it would count as an abnormality that Oe(q∨r) cannot be generalized
to Oa(q∨r). This brings us to a second type of abnormalities. Let †A abbreviate
(OeA ∧ ¬OaA). Where A1, . . . , An ∈ Wa, and n ≥ 2, the general form of this
second type of abnormalities is Oe(A1∨ . . .∨An)∧¬†A1∧ . . .∧¬†An∧¬Oa(A1∨
. . . ∨An).

We can now return to our Johnson example. We shall use ‡(A1 ∨ . . . ∨ An)
to abbreviate Oe(A1 ∨ . . .∨An)∧¬†A1 ∧ . . .∧¬†An ∧¬Oa(A1 ∨ . . .∨An). One
way to continue the proof is as follows:

8 Oa¬F 5; RC {†¬F}
9 Oa(F ∨ S) 4; RC {†F, †S, ‡(F ∨ S)}
10 OaS 8, 9; RU {†¬F, †F, †S, ‡(F ∨ S)}

Lines 8 and 9 are applications of the conditional rule. This is a rule that leads
to the introduction of a new condition. Note that (Oe¬F ⊃ Oa¬F ) ∨ (Oe¬F ∧
¬Oa¬F ) is P2-derivable from the premises. One way to read this is: Oa¬F
is derivable from Oe¬F or Oe¬F ∧ ¬Oa¬F is true. This is the motor behind
the proof theory: abnormalities are assumed to be false unless and until proven
otherwise. If at some point in the proof the condition of line 8 is no longer fulfilled,
then this line is marked, indicating that the formula on that line is no longer
considered as derived in the proof. An analogous reasoning holds for line 9. In
this case, (Oe(F ∨S) ⊃ Oa(F ∨S))∨ ((OeF ∧¬OaF )∨ (OeS∧¬OaS)∨‡(F ∨S))



is P2-derivable from the premises, and also here, the abnormalities are assumed
to be false unless and until proven otherwise.

Line 10 is an application of the unconditional rule. Note that when the un-
conditional rule is applied, no new formulas are added to the condition, but any
formula that occurs in a non-empty condition is ‘carried’ over to the conclusion
of the application. The reason for this is easy to understand. If, at some point,
line 8 or line 9 has to be marked (because the condition is no longer satisfied),
then evidently any line that depends on it, should also be marked.

The following continuations of the proof are meant to illustrate that OaT is
not P2.1r-derivable. Analogous to line 8, the conditional rule allows one to add
a line to the proof on which OaT is derived on the appropriate condition:

11 OaT 6; RC {OeT ∧ ¬OaT}

At this stage of the proof, the formula OaT is considered as derived. Things
change, however, as soon as the following line is added:

12 OeT ∧ ¬OaT 6, 7; RU ∅

This line makes it clear that the condition of line 11 is not fulfilled, and hence,
line 11 is marked in view of line 12:

11 OaT 6; RC {OeT ∧ ¬OaT}X12

12 OeT ∧ ¬OaT 6, 7; RU ∅

From stage 12 on, OaT is no longer considered to be derived in the proof. It is
easy to check that line 11 will remain marked in any extension of the proof. For
this simple example, it is also easy to see that lines 8-10 will not be marked in any
extension of the proof. This is why we say that the formulas on these lines are
finally derived from the premises 1–3. (The precise definition of final derivability
follows in the next section.) Note especially that OaS is P2.1r-derivable from
the premises, even though it is ‘connected’ to a problematic obligation. Although
approaches like Horty’s constrained consistent aggregation can handle the Smith
case, they can only deal with the Johnson example by reformulating the premises
as {OeT, Oe(F ∨ S), Oe¬T, Oe¬F, Oe(T ∨ C)}—see also below.

It was hinted at in the introduction that the proof theory of P2.1r is dy-
namical. What this comes to is that lines may be unmarked at some stage in
the proof, marked at a later stage and sometimes again unmarked at a still later
stage. As is usual for adaptive logics, a distinction can be made between an in-
ternal dynamics and an external dynamics. The internal dynamics occurs when
lines are marked because of new insights in the premises (for instance, when
an abnormality that was originally not noticed is derived at a later stage). The
external dynamics occurs when new premises are added. In the remainder of this
section we shall illustrate the external dynamics.

Suppose that Johnson, after a reasoning process that is explicated by the
above proof, discusses the matter with his girlfriend and that she convinces him
that he ought not perform alternative service to his country. This new premise



brings us in a new situation: whereas lines 8-10 are finally derivable with respect
to the premises 1–3, they are no longer finally derivable when this new premise
is added.

8 Oa¬F 5; RC {†¬F}X14

9 Oa(F ∨ S) 4; RC {†F, †S, ‡(F ∨ S)}X15

10 OaS 8, 9; RU {†¬F, †F, †S, ‡(F ∨ S)}X14

11 OaT 6; RC {OeT ∧ ¬OaT}X12

12 OeT ∧ ¬OaT 6, 7; RU ∅
13 Oe¬S PREM ∅
14 †¬F ∨ †¬S 1, 2, 13, RU ∅
15 †F ∨ †S ∨ ‡(F ∨ S) 1, 2, 13, RU ∅

What this illustrates is that the formulas on lines 8–10 are finally derivable with
respect to the premises on lines 1–3, but not with respect to the premises on
lines 1–3 and 13.

To the best of our knowledge, the logic P2.1r is the first system that can
handle the Johnson example in its actual form and without adding any allegedly
‘hidden’ or ‘tacit’ premises—for instance, that it is permitted not to fight and to
fight of perform civil service). That we insist on the actual form of the Johnson
example is no accident. There are approaches available that can handle the John-
son example, but only at the expense of reducing it to an instance of the Smith
example (with some extra premises). Some readers may argue, for instance, that
the Johnson example is better formalized as

O1’ he ought to pay taxes — OeT
O2’ he ought to fight in the army or perform alternative service to his country

— Oe(F ∨ S)
O3’ he ought not to pay taxes — Oe¬T
O4’ he ought not to fight in the army — Oe¬F
O5’ he ought to pay taxes or donate to charity — Oe(T ∨ C)

Given this reformulation, there are indeed alternative approaches available that
lead to the desired result (that OS is derivable but OC is not). This, however,
misses the whole point. In our approach we do not need this reformulation to
obtain the desired results. Any reformulation that is not logically equivalent
to the original one may lead to the loss of crucial information (for instance,
the person who formulated O1-O3 may have wanted to express that Johnson is
dealing with norms from three different sources. This information is lost in the
reformulation O1’-O5’). This is why we consider it important to start from the
original premises and leave their analysis to the logic itself.

We also consider it important that, in our approach, it is not necessary to
extend the original set of premises with ‘hidden’ assumptions. The reason is that,
in complex cases, it may be far from evident which premises can be safely added
and that making the wrong ‘guesses’ may lead to explosion after all.

To end this section, we address a different kind of objection. Some readers
may wonder why we chose P2 as our underlying logic, instead of the simpler P,



and also why we not simply chose OA ∧O¬A as the form of our abnormalities.
The reason is simple: starting from P and taking OA ∧ ¬A as the form of the
abnormalities does not result in an adaptive logic that has the desired properties.
For instance, it would not enable one to handle the Smith example. This is
because O¬F, O(F ∨ S) 0P OS ∨ (OF ∧ O¬F ). So, even if one assumes that
OF ∧O¬F is false unless and until proven otherwise, this will not yield OS as
a conditional conclusion. Put more generally, the problem is that aggregation
would not be validated contextually, in view of {OA ∧ OB} 0P O(A ∧ B) ∨
(OA ∧ O¬A) ∨ (OB ∧ O¬B). Also, combining P with all formulas of the form
(OA ∧OB) ∧ ¬O(A ∧B) as abnormalities will not do, since this leads to a flip-
flop logic. The upshot is that we could not find any form for the abnormalities
(expressible in the language of P) that would lead to the desired adaptive logic.
We do not exclude, however, that by varying on P (for instance, by giving up
interdefinability) one might obtain a system that is simpler than P2.1r. Still,
the purpose of the present paper was to stay as close as possible to Goble’s
P-systems.

8 The Adaptive Logic P2.1r

In this section, we present the logic P2.1r in a formally precise way. As any other
adaptive logic in standard format, the logic P2.1r is characterized by a triple: a
lower limit logic (a reflexive, transitive, monotonic, uniform, and compact logic
for which there is a positive test)12, a set of abnormalities Ω (characterized by a,
possibly restricted, logical form) and a strategy. The lower limit logic is the logic
that determines the stable part of the adaptive logic, and that also determines
the unconditional rule. In the case of P2.1r, the lower limit logic is P2 and the
strategy is Reliability.

As we have seen, the abnormalities in P2.1r are characterized by two different
forms of formulas. In this case, however, there is no problem to take the union
Ω of the two separate sets Ω1 and Ω2, and to define both the semantics and the
derivability relation with respect to this unified set. The set of abnormalities are
defined as follows:

Ω1 = {†A | A ∈ Wa}
Ω2 = {‡(A1 ∨ . . . ∨An) | A1, . . . , An ∈ Wa;n ≥ 2}
Ω = Ω1 ∪Ω2

In order to define the semantics, we need some further definitions. We first define
the abnormal part of a P2-model:

12 A property for objects of a given kind is decidable iff there is a mechanical procedure
that leads to the answer YES if the property holds and to the answer NO if the
property does not hold. There is a positive test for objects of a given kind iff there
is a mechanical procedure that leads to the answer YES if the property holds. If the
property does not hold the procedure may lead to the answer NO, but may continue
forever.



Definition 1. Ab(M) = {A ∈ Ω |M  A}

We shall say that a Dab-formula Dab(∆) is a Dab-consequence of Γ if it is P2-
derivable from Γ and that it is a minimal Dab-consequence if there is no ∆′ ⊂ ∆
such that Dab(∆′) is also a Dab-consequence of Γ . The set of formulas that are
unreliable with respect to Γ , denoted by U(Γ ), is defined by

Definition 2. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences
of Γ , U(Γ ) = ∆1∪∆2∪ . . . is the set of formulas that are unreliable with respect
to Γ .

In view of these definitions, the semantic consequence relation of P2.1r is given
by:

Definition 3. A P2-model M of Γ is reliable iff Ab(M) ⊆ U(Γ ).

Definition 4. Γ �P2.1r A iff A is verified by all reliable models of Γ .

As is common for all adaptive logics in standard format, the proof theory of
P2.1r is characterized by three generic inference rules and a marking definition.
The inference rules only refer to the lower limit logic, in our case P2. Where Γ
is the set of premises, the inference rules are given by

PREM If A ∈ Γ : . . . . . .
A ∅

RU If A1, . . . , An `P2 B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `P2 B ∨Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The premise rule PREM simply states that, at any line of a proof, a premise
may be introduced on the empty condition. What the unconditional rule RU
comes to is that whenever A1, . . . , An `P2 B and A1, . . . , An occur in the proof
on the conditions ∆1, . . . ,∆n, then B may be added to the proof on the condition
∆1 ∪ . . . ∪ ∆n. The conditional rule RC is analogous, except that here a new
condition is introduced.

The marking definition proceeds in terms of the minimal Dab-formulas de-
rived at a stage of the proof:

Definition 5. Dab(∆) is a minimal Dab-formula at stage s iff, at stage s,
Dab(∆) is derived on condition ∅, and no Dab(∆′) with ∆′ ⊂ ∆ is derived
on condition ∅.



Definition 6. Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas
derived on condition ∅ at stage s, Us(Γ ) = ∆1 ∪ . . . ∪∆n.

Definition 7. Where ∆ is the condition of line i, line i is marked at stage s iff
∆ ∩ Us(Γ ) 6= ∅.

A formula A is said to be derived at stage s of a proof if it occurs on a line
in the proof that is unmarked at stage s. As the marking proceeds in terms of
the minimal Dab-formulas that are derived at a certain stage, it is clear that
marking is a dynamic matter: a line may be unmarked at a stage s, marked at a
later stage s′ and again unmarked at an even later stage s′′. This is why a more
stable notion of derivability is needed:

Definition 8. A is finally derived from Γ at line i of a proof at stage s iff A is
derived at a line i at stage s and every extension of the proof in which line i is
marked has an extension in which i is unmarked.

As may be expected, the derivability relation of P2.1r is defined with respect
to the notion of final derivability

Definition 9. Γ `P2.1r A (A is finally derivable from Γ ) iff A is finally derived
in an P2.1r-proof from Γ .

For all adaptive logics in standard format, soundness and completeness are
warranted in view of the soundness and completeness of the lower limit logic—see
[9] for the proofs. The soundness and completeness of P2 therefore yield:

Theorem 1. Γ `P2.1r A iff Γ �P2.1r A.

The fact that P2.1r is in standard format moreover warrants that it has a
number of other meta-theoretic properties, such as proof invariance:13

Theorem 2. If Γ `P2.1r A, then every P2.1r-proof from Γ can be extended in
such a way that A is finally derived in it.

9 In Conclusion

In this paper, we presented the logic P2.1r, which is only one logic from a
family of logics that are based on Goble’s SDLaPe. A simple extension of P2.1r

ensures that in the case of incompatible obligations (formalized, for instance, as
OeA, OeB, Oe¬(A ∧ B)), the general obligation to do A or B (Oa(A ∨ B))
is derivable. Other logics in the same family can handle cases where not all
normative statements are equally preferred.

As compared to other conflict-tolerant deontic logics, the logic P2.1r has
several strengths (see also Section 6). It preserves all nice properties of non-
adjunctive deontic logics (for instance, that O(A ∧ ¬A) is never derivable), but
13 We refer to [8] for an overview of the meta-theoretic properties and the proofs that

hold for all adaptive logics in standard format.



is much stronger (and less sensitive to the formulation of the premises) than
any other system we know. Still, none of the forms of deontic explosion that
were discussed in Section 5 are validated. Evidently, this does not mean that
P2.1r is free from any kind of explosion. For instance, P2.1r cannot handle
plain contradictions, such OeA∧¬OeA. In order to handle that kind of conflicts,
one needs a system for which the negation is paraconsistent outside the scope of
a modal operator.

Another result from the present paper is the broadening of the notion of a
normative conflict. Our logic not only enables one to deal with other kinds of
conflicts than the one that is usually studied, but also enables one to discern
links between conflicting statements. Especially the latter has been completely
ignored up to now.
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