817 research outputs found
Model for end-stage liver disease (MELD) exception for uncommon hepatic tumors
No abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55912/1/20970_ftp.pd
Revealing mammalian evolutionary relationships by comparative analysis of gene clusters
Many software tools for comparative analysis of genomic sequence data have been released in recent decades. Despite this, it remains challenging to determine evolutionary relationships in gene clusters due to their complex histories involving duplications, deletions, inversions, and conversions. One concept describing these relationships is orthology. Orthologs derive from a common ancestor by speciation, in contrast to paralogs, which derive from duplication. Discriminating orthologs from paralogs is a necessary step in most multispecies sequence analyses, but doing so accurately is impeded by the occurrence of gene conversion events. We propose a refined method of orthology assignment based on two paradigms for interpreting its definition: by genomic context or by sequence content. X-orthology (based on context) traces orthology resulting from speciation and duplication only, while N-orthology (based on content) includes the influence of conversion events
Higher-Order Assembly of BRCC36-KIAA0157 Is Required for DUB Activity and Biological Function
BRCC36 is a Zn²⁺-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN⁺ domain protein BRCC36 associates with pseudo DUB MPN⁻ proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. To understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer of heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. These data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function
'HepCheck Dublin': An Intensified Hepatitis C Screening Programme in a Homeless Population Demonstrates the Need for Alternative Models of Care
Background: Hepatitis C virus (HCV) is one of the main causes of chronic liver disease worldwide. Prevalence of HCV in homeless populations ranges from 3.9% to 36.2%. The HepCheck study sought to investigate and establish the characterisation of HCV burden among individuals who attended an intensified screening programme for HCV in homeless services in Dublin, Ireland. Methods: The HepCheck study was conducted as part of a larger European wide initiative called HepCare Europe. The study consisted of three phases; 1) all subjects completed a short survey and were offered a rapid oral HCV test; 2) a convenience sample of HCV positive participants from phase 1 were selected to complete a survey on health and social risk factors and 3) subjects were tracked along the referral pathway to identify whether they were referred to a specialist clinic, attended the specialist clinic, were assessed for cirrhosis by transient elastography (Fibroscan) and were treated for HCV. Results: 597 individuals were offered HCV screening, 73% were male and 63% reported having had a previous HCV screening. We screened 538 (90%) of those offered screening, with 37% testing positive. Among those who tested positive, 112 (56%) were ‘new positives’ and 44% were ‘known positives’. Undiagnosed HCV was prevalent in 19% of the study sample. Active past 30-day drug use was common, along with attendance for drug treatment. Unstable accommodation was the most common barrier to attending specialist appointments and accessing treatment. Depression and anxiety, dental problems and respiratory conditions were common reported health problems. 46 subjects were referred to specialised services and two subjects completed HCV treatment. Conclusions: This study demonstrates that the current hospital-based model of care is inadequate in addressing the specific needs of a homeless population and emphasises the need for a community-based treatment approach. Findings are intended to inform HepCare Europe in their development of a community-based model of care in order to engage with homeless individuals with multiple co-morbidities including substance abuse, who are affected by or infected with HCV
Recommended from our members
An Intronic Signal for Alternative Splicing in the Human Genome
An important level at which the expression of programmed cell death (PCD) genes is regulated is alternative splicing. Our previous work identified an intronic splicing regulatory element in caspase-2 (casp-2) gene. This 100-nucleotide intronic element, In100, consists of an upstream region containing a decoy 3′ splice site and a downstream region containing binding sites for splicing repressor PTB. Based on the signal of In100 element in casp-2, we have detected the In100-like sequences as a family of sequence elements associated with alternative splicing in the human genome by using computational and experimental approaches. A survey of human genome reveals the presence of more than four thousand In100-like elements in 2757 genes. These In100-like elements tend to locate more frequent in intronic regions than exonic regions. EST analyses indicate that the presence of In100-like elements correlates with the skipping of their immediate upstream exons, with 526 genes showing exon skipping in such a manner. In addition, In100-like elements are found in several human caspase genes near exons encoding the caspase active domain. RT-PCR experiments show that these caspase genes indeed undergo alternative splicing in a pattern predicted to affect their functional activity. Together, these results suggest that the In100-like elements represent a family of intronic signals for alternative splicing in the human genome.</p
An Intronic Signal for Alternative Splicing in the Human Genome
An important level at which the expression of programmed cell death (PCD) genes is regulated is alternative splicing. Our previous work identified an intronic splicing regulatory element in caspase-2 (casp-2) gene. This 100-nucleotide intronic element, In100, consists of an upstream region containing a decoy 3′ splice site and a downstream region containing binding sites for splicing repressor PTB. Based on the signal of In100 element in casp-2, we have detected the In100-like sequences as a family of sequence elements associated with alternative splicing in the human genome by using computational and experimental approaches. A survey of human genome reveals the presence of more than four thousand In100-like elements in 2757 genes. These In100-like elements tend to locate more frequent in intronic regions than exonic regions. EST analyses indicate that the presence of In100-like elements correlates with the skipping of their immediate upstream exons, with 526 genes showing exon skipping in such a manner. In addition, In100-like elements are found in several human caspase genes near exons encoding the caspase active domain. RT-PCR experiments show that these caspase genes indeed undergo alternative splicing in a pattern predicted to affect their functional activity. Together, these results suggest that the In100-like elements represent a family of intronic signals for alternative splicing in the human genome
The Effector Domain of MARCKS Is a Nuclear Localization Signal that Regulates Cellular PIP2 Levels and Nuclear PIP2 Localization
Translocation to the nucleus of diacylglycerol kinase (DGK)– ζ is dependent on a sequence homologous to the effector domain of Myristoylated Alanine Rich C-Kinase Substrate (MARCKS). These data would suggest that MARCKS could also localize to the nucleus. A single report demonstrated immunofluorescence staining of MARCKS in the nucleus; however, further experimental evidence confirming the specific domain responsible for this localization has not been reported. Here, we report that MARCKS is present in the nucleus in GBM cell lines. We then over-expressed wild-type MARCKS (WT) and MARCKS with the effector domain deleted (ΔED), both tagged with V5-epitope in a GBM cell line with low endogenous MARCKS expression (U87). We found that MARCKS-WT localized to the nucleus, while the MARCKS construct without the effector domain remained in the cytoplasm. We also found that over-expression of MARCKS-WT resulted in a significant increase in total cellular phosphatidyl-inositol (4,5) bisphosphate (PIP2) levels, consistent with prior evidence that MARCKS can regulate PIP2 levels. We also found increased staining for PIP2 in the nucleus with MARCKS-WT over-expression compared to MARCKS ΔED by immunofluorescence. Interestingly, we observed MARCKS and PIP2 co-localization in the nucleus. Lastly, we found changes in gene expression when MARCKS was not present in the nucleus (MARCKS ΔED). These data indicate that the MARCKS effector domain can function as a nuclear localization signal and that this sequence is critical for the ability of MARCKS to regulate PIP2 levels, nuclear localization, and gene expression. These data suggests a novel role for MARCKS in regulating nuclear functions such as gene expression
- …
