1,343 research outputs found
Taxonomy and palaeobiogeography of the Cenozoic Euro-Mediterranean rissoid gastropod Galeodinopsis and its relationship with close genera
The investigation of the Late Paleogene to Late Neogene species of rissoid gastropod Galeodinopsis in the Euro-Mediterranean area has supported the hypothesis that this genus is an intermediate form between two well-known rissoids, Alvinia and Manzonia. We recognized four species of Galeodinopsis: G. biangulata, G. germanica sp. nov., G. semperi (new name for Rissoa duboisii), and G. tiberiana. The oldest (very Late Eocene/Oligocene) representatives of Galeodinopsis, G. biangulata, and G. semperi, share similar shell shape and microsculpture with Alvinia. This suggests that Galeodinopsis originated from some Eocene species related to Alvinia. The new species represents the first occurrence within Galeodinopsis of a combination of characters very close to those of Manzonia, above all the typical pitted microsculpture. We hypothesize that Manzonia evolved from Galeodinopsis rather than from the genera Alvania or Alvinia, as previously supposed. Galeodinopsis originated during the very Late Eocene/Oligocene in the North Sea Basin. Afterwards it underwent a strong southward shift to the mid-high east Atlantic and the Mediterranean area, during the Mio-Pliocene, and to the Recent tropical eastern Atlantic coasts, where the type species G. tiberiana still lives. The shift likely was due to a combination of climate cooling and palaeogeographical changes. The distribution of G. biangulata suggests that connections between the North Sea Basin and the Atlantic domain opened through the Channel area at least during the Early Oligocene, earlier than indicated previously. The distribution of Manzonia moulinsi supports the idea of a southern connection to the Atlantic Aquitaine Basin via the Rhine Graben during the Late Oligocene. From a
palaeoecological point of view, Galeodinopsis includes warm species with planktotrophic larval development that are typical of the shelf environment in fully marine conditions
Automated reliability assessment for spectroscopic redshift measurements
We present a new approach to automate the spectroscopic redshift reliability
assessment based on machine learning (ML) and characteristics of the redshift
probability density function (PDF).
We propose to rephrase the spectroscopic redshift estimation into a Bayesian
framework, in order to incorporate all sources of information and uncertainties
related to the redshift estimation process, and produce a redshift posterior
PDF that will be the starting-point for ML algorithms to provide an automated
assessment of a redshift reliability.
As a use case, public data from the VIMOS VLT Deep Survey is exploited to
present and test this new methodology. We first tried to reproduce the existing
reliability flags using supervised classification to describe different types
of redshift PDFs, but due to the subjective definition of these flags, soon
opted for a new homogeneous partitioning of the data into distinct clusters via
unsupervised classification. After assessing the accuracy of the new clusters
via resubstitution and test predictions, unlabelled data from preliminary mock
simulations for the Euclid space mission are projected into this mapping to
predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2).
Latest version 28 September 2017 (this version v3
Integral field spectroscopy with SINFONI of VVDS galaxies. II. The mass-metallicity relation at 1.2 < z < 1.6
This work aims to provide a first insight into the mass-metallicity (MZ)
relation of star-forming galaxies at redshift z~1.4. To reach this goal, we
present a first set of nine VVDS galaxies observed with the NIR integral-field
spectrograph SINFONI on the VLT. Oxygen abundances are derived from empirical
indicators based on the ratio between strong nebular emission-lines (Halpha,
[NII]6584 and [SII]6717,6731). Stellar masses are deduced from SED fitting with
Charlot & Bruzual (2007) population synthesis models, and star formation rates
are derived from [OII]3727 and Halpha emission-line luminosities. We find a
typical shift of 0.2-0.4 dex towards lower metallicities for the z~1.4
galaxies, compared to the MZ-relation in the local universe as derived from
SDSS data. However, this small sample of eight galaxies does not show any clear
correlation between stellar mass and metallicity, unlike other larger samples
at different redshift (z~0, z~0.7, and z~2). Indeed, our galaxies lie just
under the relation at z~2 and show a small trend for more massive galaxies to
be more metallic (~0.1 logarithmic slope). There are two possible explanations
to account for these observations. First, the most massive galaxies present
higher specific star formation rates when compared to the global VVDS sample
which could explain the particularly low metallicity of these galaxies as
already shown in the SDSS sample. Second, inflow of metal-poor gas due to tidal
interactions could also explain the low metallicity of these galaxies as two of
these three galaxies show clear signatures of merging in their velocity fields.
Finally, we find that the metallicity of 4 galaxies is lower by ~0.2 to 0.4 dex
if we take into account the N/O abundance ratio in their metallicity estimate.Comment: 7 pages, 4 figures, accepted in A&A Comments: Comments: more accurate
results with better stellar mass estimate
Lyman-alpha absorption around nearby galaxies
We have used STIS aboard HST to search for Lyman-alpha (Lya) absorption lines
in the outer regions of eight nearby galaxies using background QSOs and AGN as
probes. Lya lines are detected within a few hundred km/s of the systemic
velocity of the galaxy in all cases. We conclude that a background
line-of-sight which passes within 26-200 h-1 kpc of a foreground galaxy is
likely to intercept low column density neutral hydrogen with log N(HI) >~ 13.0.
The ubiquity of detections implies a covering factor of ~ 100% for low N(HI)
gas around galaxies within 200 h-1 kpc. We discuss the difficulty in trying to
associate individual absorption components with the selected galaxies and their
neighbors, but show that by degrading our STIS data to lower resolutions, we
are able to reproduce the anti-correlation of Lya equivalent width and impact
parameter found at higher redshift. We also show that the equivalent width and
column density of Lya complexes (when individual components are summed over ~
1000 km/s) correlate well with a simple estimate of the volume density of
galaxies brighter than M(B) = -17.5 at the same redshift as a Lya complex. We
do not reject the hypothesis that the selected galaxies are directly
responsible for the observed Lya lines, but our analysis indicates that
absorption by clumpy intragroup gas is an equally likely explanation. (Abriged)Comment: Accepted for publication in Nov 20, 2002 issue of ApJ. Paper with all
figures can be found at http://www.astro.princeton.edu/~dvb/lyapaper.ps
(preferable). Minor typos fixe
The history of mass assembly of faint red galaxies in 28 galaxy clusters since z=1.3
We measure the relative evolution of the number of bright and faint (as faint
as 0.05 L*) red galaxies in a sample of 28 clusters, of which 16 are at 0.50<=
z<=1.27, all observed through a pair of filters bracketing the 4000 Angstrom
break rest-frame. The abundance of red galaxies, relative to bright ones, is
constant over all the studied redshift range, 0<z<1.3, and rules out a
differential evolution between bright and faint red galaxies as large as
claimed in some past works. Faint red galaxies are largely assembled and in
place at z=1.3 and their deficit does not depend on cluster mass, parametrized
by velocity dispersion or X-ray luminosity. Our analysis, with respect to
previous one, samples a wider redshift range, minimizes systematics and put a
more attention to statistical issues, keeping at the same time a large number
of clusters.Comment: MNRAS, 386, 1045. Half a single sentence (in sec 4.4) change
The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey
We aim at improving constraints on the epoch of galaxy formation by measuring
the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS
Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the
simultaneous fitting with the GOSSIP+ software of observed UV rest-frame
spectra and photometric data from the u-band up to 4.5 microns using composite
stellar population models. We conclude from extensive simulations that at z>2
the joint analysis of spectroscopy and photometry combined with restricted age
possibilities when taking into account the age of the Universe substantially
reduces systematic uncertainties and degeneracies in the age derivation. We
find galaxy ages ranging from very young with a few tens of million years to
substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f
derived from the measured ages indicate that galaxies may have started forming
stars as early as z_f~15. We produce the formation redshift function (FzF), the
number of galaxies per unit volume formed at a redshift z_f, and compare the
FzF in increasing redshift bins finding a remarkably constant 'universal' FzF.
The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a
smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of
the same order as the observed rise in the star formation rate density (SFRD).
The ratio of the SFRD with the FzF gives an average SFR per galaxy of
~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these
redshifts. From the smooth rise in the FzF we infer that the period of galaxy
formation extends from the highest possible redshifts that we can probe at z~15
down to redshifts z~2. This indicates that galaxy formation is a continuous
process over cosmic time, with a higher number of galaxies forming at the peak
in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page
Studying the evolution of large-scale structure with the VIMOS-VLT Deep Survey
The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of
depth, angular size and number of measured galaxies among surveys of the
distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep),
35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First
Epoch'' data from VVDS-Deep already allow investigations of galaxy clustering
and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5,
in addition to measuring accurately evolution in the properties of galaxies up
to z~4. This paper concentrates on the main results obtained so far on galaxy
clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6\pm
0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over
the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The
interplay of galaxy and structure evolution in producing this observation is
discussed in some detail. Galaxy clustering is found to depend on galaxy
luminosity also at z~ 1, but luminous galaxies at this redshift show a
significantly steeper small-scale correlation function than their z=0
counterparts. Finally, red galaxies remain more clustered than blue galaxies
out to similar redshifts, with a nearly constant relative bias among the two
classes, b_{rel}~1.4, despite the rather dramatic evolution of the
color-density relation over the same redshift range.Comment: 14 pages. Extended, combined version of two invited review papers
presented at: 1) XXVIth Astrophysics Moriond Meeting: "From Dark Halos to
Light", March 2006, proc. edited by L.Tresse, S. Maurogordato and J. Tran
Thanh Van (Editions Frontieres); 2) Vulcano Workshop 2006 "Frontier Objects
in Astrophysics and Particle Physics", May 2006, proc. edited by F.
Giovannelli & G. Mannocchi, Italian Physical Society (Editrice Compositori,
Bologna
- …
