327 research outputs found

    2023 Updated ACVIM consensus statement on leptospirosis in dogs.

    Get PDF
    Since publication of the last consensus statement on leptospirosis in dogs, there has been revision of leptospiral taxonomy and advancements in typing methods, widespread use of new diagnostic tests and vaccines, and improved understanding of the epidemiology and pathophysiology of the disease. Leptospirosis continues to be prevalent in dogs, including in small breed dogs from urban areas, puppies as young as 11 weeks of age, geriatric dogs, dogs in rural areas, and dogs that have been inadequately vaccinated for leptospirosis (including dogs vaccinated with 2-serovar Leptospira vaccines in some regions). In 2021, the American College of Veterinary Internal Medicine (ACVIM) Board of Regents voted to approve the topic for a revised Consensus Statement. After identification of core panelists, a multidisciplinary group of 6 experts from the fields of veterinary medicine, human medicine, and public health was assembled to vote on the recommendations using the Delphi method. A draft was presented at the 2023 ACVIM Forum, and a written draft posted on the ACVIM website for comment by the membership before submission to the editors of the Journal of Veterinary Internal Medicine. This revised document provides guidance for veterinary practitioners on disease in dogs as well as cats. The level of agreement among the 12 voting members (including core panelists) is provided in association with each recommendation. A denominator lower than 12 reflects abstention of ≥1 panelists either because they considered the recommendation to be outside their scope of expertise or because there was a perceived conflict of interest

    Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement

    Get PDF
    OBJECTIVES There is a growing understanding of the complexity of interplay between renal and cardiovascular systems in both health and disease. The medical profession has adopted the term "cardiorenal syndrome" (CRS) to describe the pathophysiological relationship between the kidney and heart in disease. CRS has yet to be formally defined and described by the veterinary profession and its existence and importance in dogs and cats warrant investigation. The CRS Consensus Group, comprising nine veterinary cardiologists and seven nephrologists from Europe and North America, sought to achieve consensus around the definition, pathophysiology, diagnosis and management of dogs and cats with "cardiovascular-renal disorders" (CvRD). To this end, the Delphi formal methodology for defining/building consensus and defining guidelines was utilised. METHODS Following a literature review, 13 candidate statements regarding CvRD in dogs and cats were tested for consensus, using a modified Delphi method. As a new area of interest, well-designed studies, specific to CRS/CvRD, are lacking, particularly in dogs and cats. Hence, while scientific justification of all the recommendations was sought and used when available, recommendations were largely reliant on theory, expert opinion, small clinical studies and extrapolation from data derived from other species. RESULTS Of the 13 statements, 11 achieved consensus and 2 did not. The modified Delphi approach worked well to achieve consensus in an objective manner and to develop initial guidelines for CvRD. DISCUSSION The resultant manuscript describes consensus statements for the definition, classification, diagnosis and management strategies for veterinary patients with CvRD, with an emphasis on the pathological interplay between the two organ systems. By formulating consensus statements regarding CvRD in veterinary medicine, the authors hope to stimulate interest in and advancement of the understanding and management of CvRD in dogs and cats. The use of a formalised method for consensus and guideline development should be considered for other topics in veterinary medicine

    RXTE Observations of an Outburst of Recurrent X-ray Nova GS 1354-644

    Full text link
    We present the results of Rossi X-ray Timing Explorer observations of GS 1354-644 during a modest outburst in 1997-1998. The source is one of a handful of black hole X-ray transients that are confirmed to be recurrent in X-rays. A 1987 outburst of the same source observed by Ginga was much brighter, and showed a high/soft spectral state. In contrast the 1997-1998 outburst showed a low/hard spectral state. Both states are typical for black hole binaries. The RXTE All Sky Monitor observed an outburst duration of 150 to 200 days. PCA and HEXTE observations covered ~70 days near the maximum of the light curve and during the flux decline. Throughout the observations, the spectrum can be approximated by Compton upscattering of soft photons by energetic electrons. The hot electron cloud has a temperature kT ~30 keV and optical depth tau~4--5. To fit the data well an additional iron fluorescent line and reflection component are required, which indicates the presence of optically thick cool material, most probably in the outer part of the accretion disk. Dramatic fast variability was observed, and has been analyzed in the context of a shot noise model. The spectrum appeared to be softest at the peaks of the shot-noise variability. The shape of the power spectrum was typical for black hole systems in a low/hard state. We note a qualitative difference in the shape of the dependence of fractional variability on energy, when we compare systems with black holes and with neutron stars. Since it is difficult to discriminate these systems on spectral grounds, at least in their low/hard states, this new difference might be important.Comment: 12 pages, 9 figures, accepted for publication in ApJ (Feb. 2000, v.530), uses emulateapj.st

    A revised 1000 year atmospheric δ\u3csup\u3e13\u3c/sup\u3e C-CO2 record from Law Dome and South Pole, Antarctica

    Get PDF
    We present new measurements of δ13C of CO2 extracted from a high-resolution ice core from Law Dome (East Antarctica), together with firn measurements performed at Law Dome and South Pole, covering the last 150 years. Our analysis is motivated by the need to better understand the role and feedback of the carbon (C) cycle in climate change, by advances in measurement methods, and by apparent anomalies when comparing ice core and firn air δ13C records from Law Dome and South Pole. We demonstrate improved consistency between Law Dome ice, South Pole firn, and the Cape Grim (Tasmania) atmospheric δ13C data, providing evidence that our new record reliably extends direct atmospheric measurements back in time. We also show a revised version of early δ13C measurements covering the last 1000 years, with a mean preindustrial level of -6.50‰. Finally, we use a Kalman Filter Double Deconvolution to infer net natural CO2 fluxes between atmosphere, ocean, and land, which cause small δ13C deviations from the predominant anthropogenically induced δ13C decrease. The main features found from the previous δ13C record are confirmed, including the ocean as the dominant cause for the 1940 A.D. CO2 leveling. Our new record provides a solid basis for future investigation of the causes of decadal to centennial variations of the preindustrial atmospheric CO2 concentration. Those causes are of potential significance for predicting future CO2 levels and when attempting atmospheric verification of recent and future global carbon emission mitigation measures through Coupled Climate Carbon Cycle Models. Key Points New and revised, firn and ice δ13C-CO2 measurements from Antarctica Improve consistency between ice and firn δ13C-CO2 measurements Net natural CO2 fluxes between atmosphere, ocean and land inferred ©2013. American Geophysical Union. All Rights Reserved

    An open label pilot trial of low‐dose lithium for young people at ultra‐high risk for psychosis

    Get PDF
    Aim: Lithium, even at low doses, appears to offer neuroprotection against a wide variety of insults. In this controlled pilot, we examined the safety (i.e., side‐effect profile) of lithium in a sample of young people identified at ultra‐high risk (UHR) for psychosis. The secondary aim was to explore whether lithium provided a signal of clinical efficacy in reducing transition to psychosis compared with treatment as usual (TAU). Methods: Young people attending the PACE clinic at Orygen, Melbourne, were prescribed a fixed dose (450 mg) of lithium (n = 25) or received TAU (n = 78). The primary outcome examined side‐effects, with transition to psychosis, functioning and measures of psychopathology assessed as secondary outcomes. Results: Participants in both groups were functionally compromised (lithium group GAF = 56.6; monitoring group GAF = 56.9). Side‐effect assessment indicated that lithium was well‐tolerated. 64% (n = 16) of participants in the lithium group were lithium‐adherent to week 12. Few cases transitioned to psychosis across the study period; lithium group 4% (n = 1); monitoring group 7.7% (n = 6). There was no difference in time to transition to psychosis between the groups. No group differences were observed in other functioning and symptom domains, although all outcomes improved over time. Conclusions: With a side‐effect profile either comparable to, or better than UHR antipsychotic trials, lithium might be explored for further research with UHR young people. A definitive larger trial is needed to determine the efficacy of lithium in this cohort

    The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models

    Get PDF
    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system

    Biological and climate controls on North Atlantic marine carbon dynamics over the last millennium: Insights from an absolutely-dated shell based record from the North Icelandic Shelf

    Get PDF
    Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era, there is a pressing need to construct long‐term records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the past biological and climate controls on the carbon isotopic (δ13Cshell) composition of the North Icelandic shelf waters over the last millennium, derived from the shells of the long‐lived marine bivalve mollusk Arctica islandica. Variability in the annually resolved δ13Cshell record is dominated by multidecadal variability with a negative trend (−0.003 ± 0.002‰ yr−1) over the industrial era (1800–2000 Common Era). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13Cshell record with Contemporaneous proxy archives, over the last millennium, and instrumental data over the twentieth century, highlights that both biological (primary production) and physical environmental factors, such as relative shifts in the proportion of Subpolar Mode Waters and Arctic Intermediate Waters entrained onto the North Icelandic shelf, atmospheric circulation patterns associated with the winter North Atlantic Oscillation, and sea surface temperature and salinity of the subpolar gyre, are the likely mechanisms that contribute to natural variations in seawater δ13C variability on the North Icelandic shelf. Contrasting δ13C fractionation processes associated with these biological and physical mechanisms likely cause the attenuated marine Suess effect signal at this locality

    Recent Widespread Tree Growth Decline Despite Increasing Atmospheric CO2

    Get PDF
    Background: The synergetic effects of recent rising atmospheric CO2 and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Methodology/Principal Findings: Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9u latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53 % increases in WUE over the past century, growth decline (measured as a decrease in basal area increment – BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Conclusions: Our results show an unexpected widespread tree growth decline in temperate and boreal forests due t
    corecore