990 research outputs found
Atomic layer deposition of titanium nitride for quantum circuits
Superconducting thin films with high intrinsic kinetic inductance are of
great importance for photon detectors, achieving strong coupling in hybrid
systems, and protected qubits. We report on the performance of titanium nitride
resonators, patterned on thin films (9-110 nm) grown by atomic layer
deposition, with sheet inductances of up to 234 pH/square. For films thicker
than 14 nm, quality factors measured in the quantum regime range from 0.4 to
1.0 million and are likely limited by dielectric two-level systems.
Additionally, we show characteristic impedances up to 28 kOhm, with no
significant degradation of the internal quality factor as the impedance
increases. These high impedances correspond to an increased single photon
coupling strength of 24 times compared to a 50 Ohm resonator, transformative
for hybrid quantum systems and quantum sensing.Comment: 10 pages, 8 figures including supplemental material
Random access quantum information processors
Qubit connectivity is an important property of a quantum processor, with an
ideal processor having random access -- the ability of arbitrary qubit pairs to
interact directly. Here, we implement a random access superconducting quantum
information processor, demonstrating universal operations on a nine-bit quantum
memory, with a single transmon serving as the central processor. The quantum
memory uses the eigenmodes of a linear array of coupled superconducting
resonators. The memory bits are superpositions of vacuum and single-photon
states, controlled by a single superconducting transmon coupled to the edge of
the array. We selectively stimulate single-photon vacuum Rabi oscillations
between the transmon and individual eigenmodes through parametric flux
modulation of the transmon frequency, producing sidebands resonant with the
modes. Utilizing these oscillations for state transfer, we perform a universal
set of single- and two-qubit gates between arbitrary pairs of modes, using only
the charge and flux bias of the transmon. Further, we prepare multimode
entangled Bell and GHZ states of arbitrary modes. The fast and flexible
control, achieved with efficient use of cryogenic resources and control
electronics, in a scalable architecture compatible with state-of-the-art
quantum memories is promising for quantum computation and simulation.Comment: 7 pages, 5 figures, supplementary information ancillary file, 21
page
The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing
Quantum computing architectures are on the verge of scalability, a key
requirement for the implementation of a universal quantum computer. The next
stage in this quest is the realization of quantum error correction codes, which
will mitigate the impact of faulty quantum information on a quantum computer.
Architectures with ten or more quantum bits (qubits) have been realized using
trapped ions and superconducting circuits. While these implementations are
potentially scalable, true scalability will require systems engineering to
combine quantum and classical hardware. One technology demanding imminent
efforts is the realization of a suitable wiring method for the control and
measurement of a large number of qubits. In this work, we introduce an
interconnect solution for solid-state qubits: The quantum socket. The quantum
socket fully exploits the third dimension to connect classical electronics to
qubits with higher density and better performance than two-dimensional methods
based on wire bonding. The quantum socket is based on spring-mounted micro
wires the three-dimensional wires that push directly on a micro-fabricated
chip, making electrical contact. A small wire cross section (~1 mmm), nearly
non-magnetic components, and functionality at low temperatures make the quantum
socket ideal to operate solid-state qubits. The wires have a coaxial geometry
and operate over a frequency range from DC to 8 GHz, with a contact resistance
of ~150 mohm, an impedance mismatch of ~10 ohm, and minimal crosstalk. As a
proof of principle, we fabricated and used a quantum socket to measure
superconducting resonators at a temperature of ~10 mK.Comment: Main: 31 pages, 19 figs., 8 tables, 8 apps.; suppl.: 4 pages, 5 figs.
(HiRes figs. and movies on request). Submitte
Report of the panel on lithospheric structure and evolution, section 3
The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents
International Society of Sports Nutrition position stand: beta-alanine
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4–6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4–6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine
Predictors of failed attendances in a multi-specialty outpatient centre using electronic databases.
BACKGROUND: Failure to keep outpatient medical appointments results in inefficiencies and costs. The objective of this study is to show the factors in an existing electronic database that affect failed appointments and to develop a predictive probability model to increase the effectiveness of interventions. METHODS: A retrospective study was conducted on outpatient clinic attendances at Tan Tock Seng Hospital, Singapore from 2000 to 2004. 22864 patients were randomly sampled for analysis. The outcome measure was failed outpatient appointments according to each patient's latest appointment. RESULTS: Failures comprised of 21% of all appointments and 39% when using the patients' latest appointment. Using odds ratios from the mutliple logistic regression analysis, age group (0.75 to 0.84 for groups above 40 years compared to below 20 years), race (1.48 for Malays, 1.61 for Indians compared to Chinese), days from scheduling to appointment (2.38 for more than 21 days compared to less than 7 days), previous failed appointments (1.79 for more than 60% failures and 4.38 for no previous appointments, compared with less than 20% failures), provision of cell phone number (0.10 for providing numbers compared to otherwise) and distance from hospital (1.14 for more than 14 km compared to less than 6 km) were significantly associated with failed appointments. The predicted probability model's diagnostic accuracy to predict failures is more than 80%. CONCLUSION: A few key variables have shown to adequately account for and predict failed appointments using existing electronic databases. These can be used to develop integrative technological solutions in the outpatient clinic
Quantum Fields on the Groenewold-Moyal Plane
We give an introductory review of quantum physics on the noncommutative
spacetime called the Groenewold-Moyal plane. Basic ideas like star products,
twisted statistics, second quantized fields and discrete symmetries are
discussed. We also outline some of the recent developments in these fields and
mention where one can search for experimental signals.Comment: 50 pages, 3 figures. v2: published versio
Performance Characteristics of Polyethylene Terephthalate (PET) Modified Asphalt
Polyethylene terephthalate (PET) plastic is utilized primarily in food and beverage packaging. Although a portion of waste PET is recycled, the majority of the waste is buried in landfills. Therefore, the use of ground PET particles in asphalt may provide an environmentally friendly solution for the disposal of large quantities of PET waste. This study evaluated the performance of PET as an asphalt modifier with both asphalt binder and asphalt mixture testing. The binder testing was conducted on wet process blends produced with a high shear mixer at PET contents of 5, 10, and 15 percent by weight of the binder. Dynamic Shear Rheometer (DSR) and Rotational Viscosity (RV) tests were performed on the unaged and Rolling Thin Film Oven (RTFO) aged mixtures. The mixture tests were conducted on the PET modified mixtures in both wet and dry process, and an unmodified control mixture. The wet and dry process mixtures contained 10% PET by weight of the binder. The mixture performance tests included Asphalt Pavement Analyzer (APA) rutting test, retrofitted APA Hamburg test, Indirect Tensile Strength (ITS), and Asphalt mixture Performance Tester (AMPT) dynamic modulus. The results showed: 1) the addition of PET increased the high temperature performance resulting in a bump in PG grade. Additionally, the viscosity and resulting workability of the modified binders were not adversely affected. 2) PET modified mixtures have higher maximum specific gravity and lower bulk specific gravity than the control mixture. 3) The wet process mixture exhibited better rutting resistance and a higher TSR than the control in ITS testing. 4) The dry process mixture exhibited better resistance to permanent moisture damage in APA Hamburg testing and also exhibited a higher TSR than the control in ITS testing. 5) The modified mixtures exhibited lower E* and higher phase angles than the control in AMPT modulus testing
On-line mass storage system functional design document
A functional system definition for an on-line high density magnetic tape data storage system is provided. This system can be implemented in a multi-purpose, multi-host environment, and satisfy the requirements of economical data storage in the range of 2 to 50 billion bytes
A framework for orthology assignment from gene rearrangement data
Abstract. Gene rearrangements have successfully been used in phylogenetic reconstruction and comparative genomics, but usually under the assumption that all genomes have the same gene content and that no gene is duplicated. While these assumptions allow one to work with organellar genomes, they are too restrictive when comparing nuclear genomes. The main challenge is how to deal with gene families, specifically, how to identify orthologs. While searching for orthologies is a common task in computational biology, it is usually done using sequence data. We approach that problem using gene rearrangement data, provide an optimization framework in which to phrase the problem, and present some preliminary theoretical results.
- …
