1,591 research outputs found
Validation of a skinfold based index for tracking proportional changes in lean mass
BACKGROUND: The lean mass index (LMI) is a new empirical measure that tracks within‐subject proportional changes in body mass adjusted for changes in skinfold thickness. OBJECTIVE: To compare the ability of the LMI and other skinfold derived measures of lean mass to monitor changes in lean mass. METHODS: 20 elite rugby union players undertook full anthropometric profiles on two occasions 10 weeks apart to calculate the LMI and five skinfold based measures of lean mass. Hydrodensitometry, deuterium dilution, and dual energy x ray absorptiometry provided a criterion choice, four compartment (4C) measure of lean mass for validation purposes. Regression based measures of validity, derived for within‐subject proportional changes through log transformation, included correlation coefficients and standard errors of the estimate. RESULTS: The correlation between change scores for the LMI and 4C lean mass was moderate (0.37, 90% confidence interval −0.01 to 0.66) and similar to the correlations for the other practical measures of lean mass (range 0.26 to 0.42). Standard errors of the estimate for the practical measures were in the range of 2.8–2.9%. The LMI correctly identified the direction of change in 4C lean mass for 14 of the 20 athletes, compared with 11 to 13 for the other practical measures of lean mass. CONCLUSIONS: The LMI is probably as good as other skinfold based measures for tracking lean mass and is theoretically more appropriate. Given the impracticality of the 4C criterion measure for routine field use, the LMI may offer a convenient alternative for monitoring physique changes, provided its utility is established under various conditions
Acceleration-Based Running Intensities of Professional Rugby League Match-Play
Purpose: To quantify the energetic cost of running and acceleration efforts during rugby league competition to aid in prescription and monitoring of training. Methods: Global positioning system (GPS) data were collected from 37 professional rugby league players across 2 seasons. Peak values for relative distance, average acceleration/deceleration, and metabolic power (P<sub>met</sub>) were calculated for 10 different moving-average durations (1–10 min) for each position. A mixed-effects model was used to assess the effect of position for each duration, and individual comparisons were made using a magnitude-based-inference network. Results: There were almost certainly large differences in relative distance and P<sub>met</sub> between the 10-min window and all moving averages <5 min in duration (ES = 1.21–1.88). Fullbacks, halves, and hookers covered greater relative distances than outside backs, edge forwards, and middle forwards for moving averages lasting 2–10 min. Acceleration/deceleration demands were greatest in hookers and halves compared with fullbacks, middle forwards, and outside backs. P<sub>met</sub> was greatest in hookers, halves, and fullbacks compared with middle forwards and outside backs. Conclusions: Competition running intensities varied by both position and moving-average duration. Hookers exhibited the greatest P<sub>met</sub> of all positions, due to high involvement in both attack and defense. Fullbacks also reached high P<sub>met</sub>, possibly due to a greater absolute volume of running. This study provides coaches with match data that can be used for the prescription and monitoring of specific training drills
Consistent patterns of trophic niche specialisation in host populations infected with a non-native copepod parasite.
Populations of generalist species often comprise of smaller sub-sets of relatively specialised individuals whose niches comprise small sub-sets of the overall population niche. Here, the role of parasite infections in trophic niche specialisation was tested using five wild fish populations infected with the non-native parasite Ergasilus briani, a copepod parasite with a direct lifecycle that infects the gill tissues of fish hosts. Infected and uninfected fishes were sampled from the same habitats during sampling events. Prevalence in the host populations ranged between 16 and 67 %, with parasite abundances of up to 66 parasites per fish. Although pathological impacts included hyperplasia and localised haemorrhaging of gill tissues, there were no significant differences in the length, weight and condition of infected and uninfected fishes. Stable isotope analyses (δ13C, δ15N) revealed that the trophic niche of infected fishes, measured as standard ellipse area (i.e. the isotopic niche), was consistently and significantly smaller compared to uninfected conspecifics. These niches of infected fishes always sat within that of uninfected fish, suggesting trophic specialisation in hosts. These results suggested trophic specialisation is a potentially important non-lethal consequence of parasite infection that results from impaired functional traits of the host
Anthropometric and Physical Profiles of English Academy Rugby Union Players.
The purpose of the present study was to evaluate the anthropometric and physical characteristics of English regional academy rugby union academy players by age category (under 16, under 18 and under 21s). Data were collected on 67 academy players at the beginning of the pre-season period and comprised anthropometric (height, body mass and sum of 8 skinfolds) and physical (5 m, 10 m, 20 m & 40 m sprint, acceleration, velocity & momentum; agility 505; vertical jump; yo-yo intermittent recovery test level 1; 30-15 Intermittent Fitness Test; absolute and relative 3 repetition maximum (3RM) front squat, split squat, bench press, prone row and chin; and isometric mid-thigh pull). One way analysis of variance demonstrated significant increases across the three age categories (p < 0.05) for height (e.g., 16s = 178.8 ± 7.1; 18s = 183.5 ± 7.2; 21s = 186.7 ± 6.61 cm), body mass (e.g., 16s = 79.4 ± 12.8; 18s = 88.3 ± 11.9; 21s = 98.3 ± 10.4kg), countermovement jump height and peak power, sprint momentum, velocity and acceleration; absolute, relative and isometric (e.g., 16s = 2157.9 ± 309.9; 18s = 2561.3 ± 339.4; 21s = 3104.5 ± 354.0 N) strength. Momentum, maximal speed and the ability to maintain acceleration were all discriminating factors between age categories, suggesting that these variables may be more important to monitor rather than sprint times. These findings highlight that anthropometric and physical characteristics develop across age categories and provide comparative data for English academy Rugby Union players
Influence of Bridge Facility Attributes on Bicycle Travel Behavior
An unlabeled multinomial logit model is developed to estimate the impact bridge facility attributes have on bicycle travel behavior. Data were collected in Austin, Texas, via a GPS-based smartphone application. Three attributes are analyzed and interacted with varied demographic and trip purpose information: bridge accessibility, vehicular volume, and traffic separation. Due to the significant investment in bicycle facilities at the local, state, and federal levels and the increase in urban bicycle use, it is imperative that agencies fully understand the behavioral elements underlying bicycle travel patterns. Transportation planners cannot assume bicyclists are solely focused on minimizing travel time or distance—standard practice assumptions for vehicular modes. This paper focuses on the analysis of bridge characteristics that are attractive to bicyclists. While several others have looked at bicycle facility preferences, this is the first paper to focus exclusively on bridges. Bridge facilities are fundamentally different from the res
A mathematical modelling study of an athlete's sprint time when towing a weighted sled
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s12283-013-0114-2.This study used a mathematical model to examine the effects of the sled, the running surface, and the athlete on sprint time when towing a weighted sled. Simulations showed that ratio scaling is an appropriate method of normalising the weight of the sled for athletes of different body size. The relationship between sprint time and the weight of the sled was almost linear, as long as the sled was not excessively heavy. The athlete’s sprint time and rate of increase in sprint time were greater on running surfaces with a greater coefficient of friction, and on any given running surface an athlete with a greater power-to-weight ratio had a lower rate of increase in sprint time. The angle of the tow cord did not have a substantial effect on an athlete’s sprint time. This greater understanding should help coaches set the training intensity experienced by an athlete when performing a sled-towing exercise
Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes
Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer
Methyl-donor depletion of head and neck cancer cells in vitro establishes a less aggressive tumour cell phenotype
PURPOSE: DNA methylation plays a fundamental role in the epigenetic control of carcinogenesis and is, in part, influenced by the availability of methyl donors obtained from the diet. In this study, we developed an in-vitro model to investigate whether methyl donor depletion affects the phenotype and gene expression in head and neck squamous cell carcinoma (HNSCC) cells. METHODS: HNSCC cell lines (UD-SCC2 and UPCI-SCC72) were cultured in medium deficient in methionine, folate, and choline or methyl donor complete medium. Cell doubling-time, proliferation, migration, and apoptosis were analysed. The effects of methyl donor depletion on enzymes controlling DNA methylation and the pro-apoptotic factors death-associated protein kinase-1 (DAPK1) and p53 upregulated modulator of apoptosis (PUMA) were examined by quantitative-PCR or immunoblotting. RESULTS: HNSCC cells cultured in methyl donor deplete conditions showed significantly increased cell doubling times, reduced cell proliferation, impaired cell migration, and a dose-dependent increase in apoptosis when compared to cells cultured in complete medium. Methyl donor depletion significantly increased the gene expression of DNMT3a and TET-1, an effect that was reversed upon methyl donor repletion in UD-SCC2 cells. In addition, expression of DAPK1 and PUMA was increased in UD-SCC2 cells cultured in methyl donor deplete compared to complete medium, possibly explaining the observed increase in apoptosis in these cells. CONCLUSION: Taken together, these data show that depleting HNSCC cells of methyl donors reduces the growth and mobility of HNSCC cells, while increasing rates of apoptosis, suggesting that a methyl donor depleted diet may significantly affect the growth of established HNSCC
- …
