1,746 research outputs found

    Λ\LambdaCDM or self-interacting neutrinos? - how CMB data can tell the two models apart

    Full text link
    Of the many proposed extensions to the Λ\LambdaCDM paradigm, a model in which neutrinos self-interact until close to the epoch of matter-radiation equality has been shown to provide a good fit to current cosmic microwave background (CMB) data, while at the same time alleviating tensions with late-time measurements of the expansion rate and matter fluctuation amplitude. Interestingly, CMB fits to this model either pick out a specific large value of the neutrino interaction strength, or are consistent with the extremely weak neutrino interaction found in Λ\LambdaCDM, resulting in a bimodal posterior distribution for the neutrino self-interaction cross section. In this paper, we explore why current cosmological data select this particular large neutrino self-interaction strength, and by consequence, disfavor intermediate values of the self-interaction cross section. We show how it is the 1000\ell \gtrsim 1000 CMB temperature anisotropies, most recently measured by the Planck satellite, that produce this bimodality. We also establish that smaller scale temperature data, and improved polarization data measuring the temperature-polarization cross-correlation, will best constrain the neutrino self-interaction strength. We forecast that the upcoming Simons Observatory should be capable of distinguishing between the models.Comment: 7 pages, 7 figures, comments welcome, references added, version submitted to PR

    Resolving the high redshift Lyman-alpha forest in smoothed particle hydrodynamics simulations

    Get PDF
    We use a large set of cosmological smoothed particle hydrodynamics (SPH) simulations to examine the effect of mass resolution and box size on synthetic Lya forest spectra at 2 \leq z \leq 5. The mass resolution requirements for the convergence of the mean Lya flux and flux power spectrum at z=5 are significantly stricter than at lower redshift. This is because transmission in the high redshift Lya forest is primarily due to underdense regions in the intergalactic medium (IGM), and these are less well resolved compared to the moderately overdense regions which dominate the Lya forest opacity at z~2-3. We further find that the gas density distribution in our simulations differs significantly from previous results in the literature at large overdensities (\Delta>10). We conclude that studies of the Lya forest at z=5 using SPH simulations require a gas particle mass of M_gas \leq 2x10^5 M_sol/h, which is >8 times the value required at z=2. A box size of at least 40 Mpc/h is preferable at all redshifts.Comment: 5 pages, 5 figures, 2 tables, accepted by MNRA

    Assumptions of the primordial spectrum and cosmological parameter estimation

    Get PDF
    The observables of the perturbed universe, CMB anisotropy and large structures, depend on a set of cosmological parameters, as well as, the assumed nature of primordial perturbations. In particular, the shape of the primordial power spectrum (PPS) is, at best, a well motivated assumption. It is known that the assumed functional form of the PPS in cosmological parameter estimation can affect the best fit parameters and their relative confidence limits. In this paper, we demonstrate that a specific assumed form actually drives the best fit parameters into distinct basins of likelihood in the space of cosmological parameters where the likelihood resists improvement via modifications to the PPS. The regions where considerably better likelihoods are obtained allowing free form PPS lie outside these basins. In the absence of a preferred model of inflation, this raises a concern that current cosmological parameters estimates are strongly prejudiced by the assumed form of PPS. Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of the primordial spectrum from upcoming cosmological data. It is equally important for theorists to keep an open mind towards early universe scenarios that produce features in the PPS.Comment: 11 pages, 2 figures, discussions extended, main results unchanged, matches published versio

    iCosmo: an Interactive Cosmology Package

    Full text link
    Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perform interactive cosmological calculations for the low redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations and type Ia supernovae. The associated errors for these observables can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for the calculation of cosmological forecasts with Fisher matrices which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific library available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers in the field of cosmology. Results: The iCosmo package is described with various examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.Comment: 6 pages including 2 tables and 4 figures. Accepted and published in Astronomy and Astrophysics. Public code and further resources available at http://www.icosmo.or

    Non-Gaussian Scatter in Cluster Scaling Relations

    Full text link
    We investigate the impact of non-Gaussian scatter in the cluster mass-observable scaling relation on the mass and redshift distribution of clusters detected by wide area surveys. We parameterize non-Gaussian scatter by incorporating the third and forth moments (skewness and kurtosis) into the distribution P(Mobs|M). We demonstrate that for low scatter mass proxies the higher order moments do not significantly affect the observed cluster mass and redshift distributions. However, for high scatter mass indicators it is necessary for the survey limiting mass threshold to be less than 10^14 h^-1 Msol to prevent the skewness from having a significant impact on the observed number counts, particularly at high redshift. We also show that an unknown level of non-Gaussianity in the scatter is equivalent to an additional uncertainty on the variance in P(Mobs|M) and thus may limit the constraints that can be placed on the dark energy equation of state parameter w. Furthermore, positive skewness flattens the mass function at the high mass end, and so one must also account for skewness in P(Mobs|M) when using the shape of the mass function to constrain cluster scaling-relations.Comment: 6 Pages, 3 Figures, to be submitted to ApJ Letter

    CMBPol Mission Concept Study: Prospects for polarized foreground removal

    Get PDF
    In this report we discuss the impact of polarized foregrounds on a future CMBPol satellite mission. We review our current knowledge of Galactic polarized emission at microwave frequencies, including synchrotron and thermal dust emission. We use existing data and our understanding of the physical behavior of the sources of foreground emission to generate sky templates, and start to assess how well primordial gravitational wave signals can be separated from foreground contaminants for a CMBPol mission. At the estimated foreground minimum of ~100 GHz, the polarized foregrounds are expected to be lower than a primordial polarization signal with tensor-to-scalar ratio r=0.01, in a small patch (~1%) of the sky known to have low Galactic emission. Over 75% of the sky we expect the foreground amplitude to exceed the primordial signal by about a factor of eight at the foreground minimum and on scales of two degrees. Only on the largest scales does the polarized foreground amplitude exceed the primordial signal by a larger factor of about 20. The prospects for detecting an r=0.01 signal including degree-scale measurements appear promising, with 5 sigma_r ~0.003 forecast from multiple methods. A mission that observes a range of scales offers better prospects from the foregrounds perspective than one targeting only the lowest few multipoles. We begin to explore how optimizing the composition of frequency channels in the focal plane can maximize our ability to perform component separation, with a range of typically 40 < nu < 300 GHz preferred for ten channels. Foreground cleaning methods are already in place to tackle a CMBPol mission data set, and further investigation of the optimization and detectability of the primordial signal will be useful for mission design.Comment: 42 pages, 14 figures, Foreground Removal Working Group contribution to the CMBPol Mission Concept Study, v2, matches AIP versio

    The Wilkinson Microwave Anisotropy Probe (WMAP) Source Catalog

    Get PDF
    We present the list of point sources found in the WMAP 5-year maps. The technique used in the first-year and three-year analysis now finds 390 point sources, and the five-year source catalog is complete for regions of the sky away from the galactic plane to a 2 Jy limit, with SNR > 4.7 in all bands in the least covered parts of the sky. The noise at high frequencies is still mainly radiometer noise, but at low frequencies the CMB anisotropy is the largest uncertainty. A separate search of CMB-free V-W maps finds 99 sources of which all but one can be identified with known radio sources. The sources seen by WMAP are not strongly polarized. Many of the WMAP sources show significant variability from year to year, with more than a 2:1 range between the minimum and maximum fluxes.Comment: 31 pages Latex with 4 embedded figures. Version accepted by the ApJ Supplement

    Probing Cosmic Strings with Satellite CMB measurements

    Full text link
    We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy maps, and shows that the biggest factor that produces confusion is represented by the acoustic oscillation features of the scale comparable to the size of horizon at recombination. Simulations show that the distribution of null signals for pure Gaussian maps converges to a χ2\chi^2 distribution, with detectability threshold corresponding to a string induced step signal with an amplitude of about 100 \muK which corresponds to a limit of roughly Gμ<1.5×106G\mu < 1.5\times 10^{-6}. We study the statistics of spurious detections caused by extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds, which represents the dominant source of contamination, we derive sky masks outlining the available region of the sky where the Galactic confusion is sub-dominant, specializing our analysis to the case represented by the frequency coverage and nominal sensitivity and resolution of the Planck experiment.Comment: 14 pages, 3 figures, to be published in JCA

    How light can the lightest neutralino be?

    Full text link
    In this talk we summarize previous work on mass bounds of a light neutralino in the Minimal Supersymmetric Standard Model. We show that without the GUT relation between the gaugino mass parameters M_1 and M_2, the mass of the lightest neutralino is essentially unconstrained by collider bounds and precision observables. We conclude by considering also the astrophysics and cosmology of a light neutralino.Comment: 6 pages, 3 figures, to appear in the proceedings of the 16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 201

    Radio galaxy feedback in X-ray selected groups from COSMOS: the effect on the ICM

    Get PDF
    We quantify the importance of the mechanical energy released by radio-galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-AGN located inside X-ray detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intra-group medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.Comment: Accepted for publication in the Astrophysical Journal. 12 Page
    corecore