573 research outputs found

    Support for Integrated Ecosystem Assessments of NOAA’s National Estuarine Research Reserves System (NERRS), Volume I: The Impacts of Coastal Development on the Ecology and Human Well-being of Tidal Creek Ecosystems of the US Southeast

    Get PDF
    A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages

    Minimizing Obstetric Hemorrhage

    Get PDF
    Patients undergoing cesarean deliveries are at risk for hemorrhage. In fact, hemorrhage is the leading cause of preventable maternal mortality and accounts for more than 140,000 deaths each year worldwide (O’Brien & Ulh, 2016). Hemorrhage has been associated with a number of well-established risk factors which could be recognized prior to delivery. Women who do not have these risk factors could still experience postpartum hemorrhage, but using a risk assessment tool has been shown to identify 60-85% of women who will experience hemorrhage (Shields, Goffman, & Caughey, 2017). The postpartum hemorrhage (PPH) risk assessment tool, developed by the Association of Women’s Health, Obstetric and Neonatal Nurses (AWHONN), identifies women with PPH risk factors. The tool allows clinicians to prepare for possible interventions and close monitoring of women at increased risk of bleeding, to ultimately prevent mortality. At a metropolitan hospital PPH risk assessments were not being discussed during standard pre-procedure huddles. This quality improvement project added the PPH risk assessment tool to the pre procedure huddle sheet. This facilitated interdisciplinary team discussion of PPH risk factors for patients undergoing cesarean deliveries. There were a total of 575 mothers in the study with 297 in the pre intervention period and 278 in the post. There was a statistically significant increase in estimated blood loss (EBL) between the pre and post intervention groups. While the study tool did not result in a decrease in EBL, it increased awareness among the interdisciplinary care team by facilitating discussion about PPH

    Relationship between dynamical heterogeneities and stretched exponential relaxation

    Full text link
    We identify the dynamical heterogeneities as an essential prerequisite for stretched exponential relaxation in dynamically frustrated systems. This heterogeneity takes the form of ordered domains of finite but diverging lifetime for particles in atomic or molecular systems, or spin states in magnetic materials. At the onset of the dynamical heterogeneity, the distribution of time intervals spent in such domains or traps becomes stretched exponential at long time. We rigorously show that once this is the case, the autocorrelation function of the renewal process formed by these time intervals is also stretched exponential at long time.Comment: 8 pages, 4 figures, submitted to PR

    Site-Specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional

    Get PDF
    We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr166-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr166-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼8% of total apoA-I within the artery wall but was nearly undetectable (\u3e100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr166-apoA-I existed as a lipid-poor lipoprotein with \u3c3% recovered within the HDL-like fraction (d = 1.063–1.21). NO2-Tyr166-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr166-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr166 is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall

    In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy

    Get PDF
    Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals

    Implementation of a financially incentivized weight loss competition into an already established employee wellness program

    Get PDF
    Objective: To assess improvement in clinical outcomes and patient satisfaction of a financially incentivized weight loss competition adjunct to a currently established pharmacist-directed employee wellness program. Design: Retrospective, cohort, pilot study Setting: 6 independent community pharmacy chain locations, two long-term care pharmacies, and a pharmacy corporate office in northwest and central Missouri, from January 2013 to April 2013. Participants: 24 benefit-eligible patients employed by the self- insured pharmacy chain. Intervention: A financially incentivized weight loss competition focusing on healthy lifestyle practices was implemented at nine pharmacy locations over an eight week period. Main outcome measure(s): Change from baseline in mean total cholesterol, serum triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), systolic blood pressure (SBP), diastolic blood pressure (DBP), weight, and body mass index (BMI). Patient satisfaction was also assessed after completion. Results:24 patients completed the competition. The average weight loss among all participants was 10 ± 7.3 pounds. A mean decrease in serum triglycerides was significant at 36.9 mg/dL per participant (p Conclusion: The implementation of a financially incentivized weight loss competition provided significant short-term weight loss to a patient population that was already enrolled in an established pharmacist-directed employee wellness program and had not shown clinical improvement prior to the intervention. Overall the patients were satisfied, felt healthier, and agreed to continue following the recommendations of the program.   Type: Original Researc

    A CAM controlled machine, one step to make machining as easy as printing

    Get PDF
    Manufacturing parts using a CNC machine needs highly skilled people. The development of new, user friendly human machine interfaces should make machining a designed part to be as simple as printing a document. A step towards this goal is to integrate CAM Software and CNC Machine controllers. The project aims to develop a new type of milling machine to simplify the stages between the design stage in CAD software and the manufacture of the designed part using the CNC machine. The solution chosen to achieve this is to integrate the CAM software, for this project the software is ESPRIT, with the CNC controller of the CNC machine. This project is a student project launched within the framework of an international semester project (Responsible Design) by a team of 4 students coming from all over the worl

    Further characterization of ferric—phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley

    Get PDF
    Roots of some gramineous plants secrete phytosiderophores in response to iron deficiency and take up Fe as a ferric–phytosiderophore complex through the transporter YS1 (Yellow Stripe 1). Here, this transporter in maize (ZmYS1) and barley (HvYS1) was further characterized and compared in terms of expression pattern, diurnal change, and tissue-type specificity of localization. The expression of HvYS1 was specifically induced by Fe deficiency only in barley roots, and increased with the progress of Fe deficiency, whereas ZmYS1 was expressed in maize in the leaf blades and sheaths, crown, and seminal roots, but not in the hypocotyl. HvYS1 expression was not induced by any other metal deficiency. Furthermore, in maize leaf blades, the expression was higher in the young leaf blades showing severe chlorosis than in the old leaf blades showing no chlorosis. The expression of HvYS1 showed a distinct diurnal rhythm, reaching a maximum before the onset of phytosiderophore secretion. In contrast, ZmYS1 did not show such a rhythm in expression. Immunostaining showed that ZmYS1 was localized in the epidermal cells of both crown and lateral roots, with a polar localization at the distal side of the epidermal cells. In maize leaves, ZmYS1 was localized in mesophyll cells, but not epidermal cells. These differences in gene expression pattern and tissue-type specificity of localization suggest that HvYS1 is only involved in primary Fe acquisition by barley roots, whereas ZmYS1 is involved in both primary Fe acquisition and intracellular transport of iron and other metals in maize

    Genome Sequence of the Deltaproteobacterial Strain NaphS2 and Analysis of Differential Gene Expression during Anaerobic Growth on Naphthalene

    Get PDF
    Anaerobic polycyclic hydrocarbon (PAH) degradation coupled to sulfate reduction may be an important mechanism for in situ remediation of contaminated sediments. Steps involved in the anaerobic degradation of 2-methylnaphthalene have been described in the sulfate reducing strains NaphS3, NaphS6 and N47. Evidence from N47 suggests that naphthalene degradation involves 2-methylnaphthalene as an intermediate, whereas evidence in NaphS2, NaphS3 and NaphS6 suggests a mechanism for naphthalene degradation that does not involve 2-methylnaphthalene. To further characterize pathways involved in naphthalene degradation in NaphS2, the draft genome was sequenced, and gene and protein expression examined.Draft genome sequencing, gene expression analysis, and proteomic analysis revealed that NaphS2 degrades naphthoyl-CoA in a manner analogous to benzoyl-CoA degradation. Genes including the previously characterized NmsA, thought to encode an enzyme necessary for 2-methylnaphthalene metabolism, were not upregulated during growth of NaphS2 on naphthalene, nor were the corresponding protein products. NaphS2 may possess a non-classical dearomatizing enzyme for benzoate degradation, similar to one previously characterized in Geobacter metallireducens. Identification of genes involved in toluene degradation in NaphS2 led us to determine that NaphS2 degrades toluene, a previously unreported capacity. The genome sequence also suggests that NaphS2 may degrade other monoaromatic compounds.This study demonstrates that steps leading to the degradation of 2-naphthoyl-CoA are conserved between NaphS2 and N47, however while NaphS2 possesses the capacity to degrade 2-methylnaphthalene, naphthalene degradation likely does not proceed via 2-methylnaphthalene. Instead, carboxylation or another form of activation may serve as the first step in naphthalene degradation. Degradation of toluene and 2-methylnaphthalene, and the presence of at least one bss-like and bbs-like gene cluster in this organism, suggests that NaphS2 degrades both compounds via parallel mechanisms. Elucidation of the key genes necessary for anaerobic naphthalene degradation may provide the ability to track naphthalene degradation through in situ transcript monitoring
    corecore