572 research outputs found

    Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men

    Get PDF
    <p>Recombinant human erythropoietin (rHuEpo) increases haemoglobin mass (Hbmass) and maximal oxygen uptake (v˙ O2 max).</p> <p>Purpose: This study defined the time course of changes in Hbmass, v˙ O2 max as well as running time trial performance following 4 weeks of rHuEpo administration to determine whether the laboratory observations would translate into actual improvements in running performance in the field.</p> <p>Methods: 19 trained men received rHuEpo injections of 50 IUNkg21 body mass every two days for 4 weeks. Hbmass was determined weekly using the optimized carbon monoxide rebreathing method until 4 weeks after administration. v˙ O2 max and 3,000 m time trial performance were measured pre, post administration and at the end of the study.</p> <p>Results: Relative to baseline, running performance significantly improved by ,6% after administration (10:3061:07 min:sec vs. 11:0861:15 min:sec, p,0.001) and remained significantly enhanced by ,3% 4 weeks after administration (10:4661:13 min:sec, p,0.001), while v˙ O2 max was also significantly increased post administration (60.765.8 mLNmin21Nkg21 vs. 56.066.2 mLNmin21Nkg21, p,0.001) and remained significantly increased 4 weeks after rHuEpo (58.065.6 mLNmin21Nkg21, p = 0.021). Hbmass was significantly increased at the end of administration compared to baseline (15.261.5 gNkg21 vs. 12.761.2 gNkg21, p,0.001). The rate of decrease in Hbmass toward baseline values post rHuEpo was similar to that of the increase during administration (20.53 gNkg21Nwk21, 95% confidence interval (CI) (20.68, 20.38) vs. 0.54 gNkg21Nwk21, CI (0.46, 0.63)) but Hbmass was still significantly elevated 4 weeks after administration compared to baseline (13.761.1 gNkg21, p<0.001).</p> <p>Conclusion: Running performance was improved following 4 weeks of rHuEpo and remained elevated 4 weeks after administration compared to baseline. These field performance effects coincided with rHuEpo-induced elevated v˙ O2 max and Hbmass.</p&gt

    Enteric-coated sodium bicarbonate supplementation improves high-intensity cycling performance in trained cyclists

    Get PDF
    Purpose: Enteric-coated sodium bicarbonate (NaHCO3) can attenuate gastrointestinal (GI) symptoms following acute bicarbonate loading, although the subsequent effects on exercise performance have not been investigated. The purpose of this study was to examine the effects of enteric-coated NaHCO3 supplementation on high-intensity exercise performance and GI symptoms. Methods: Eleven trained male cyclists completed three 4 km time trials after consuming; a placebo or 0.3 g∙kg–1 body mass NaHCO3 in enteric-coated or gelatin capsules. Exercise trials were timed with individual peak blood bicarbonate ion concentration ([HCO3–]). Blood acid–base balance was measured pre-ingestion, pre-exercise, and post-exercise, whereas GI symptoms were recorded pre-ingestion and immediately pre-exercise. Results: Pre-exercise blood [HCO3−] and potential hydrogen (pH) were greater for both NaHCO3 conditions (P &lt; 0.0005) when compared to placebo. Performance time was faster with enteric-coated (− 8.5 ± 9.6 s, P = 0.044) and gelatin (− 9.6 ± 7.2 s, P = 0.004) NaHCO3 compared to placebo, with no significant difference between conditions (mean difference = 1.1 ± 5.3 s, P = 1.000). Physiological responses were similar between conditions, although blood lactate ion concentration was higher with gelatin NaHCO3 (2.4 ± 1.7 mmol∙L–1, P = 0.003) compared with placebo. Furthermore, fewer participants experienced GI symptoms with enteric-coated (n = 3) compared to gelatin (n = 7) NaHCO3. Discussion: Acute enteric-coated NaHCO3 consumption mitigates GI symptoms at the onset of exercise and improves subsequent 4 km cycling TT performance. Athletes who experience GI side-effects after acute bicarbonate loading may, therefore, benefit from enteric-coated NaHCO3 supplementation prior to exercise performance.</p

    Half-Time Strategies to Enhance Second-Half Performance in Team-Sports Players: A Review and Recommendations

    Get PDF
    The competitive demands of numerous intermittent team sports require that two consecutive periods of play are separated by a half-time break. Typically, half-time allows players to: return to the changing rooms, temporarily relax from the cognitive demands of the first half of match-play, rehydrate, re-fuel, attend to injury or equipment concerns, and to receive tactical instruction and coach feedback in preparation for the second half. These passive practices have been associated with physiological changes which impair physical and cognitive performance in the initial stages of the second half. An increased risk of injury has also been observed following half-time. On the day of competition, modification of half-time practices may therefore provide Sports Scientists and Strength and Conditioning Coaches with an opportunity to optimise second half performance. An overview of strategies that may benefit team sports athletes is presented; specifically, the efficacy of: heat maintenance strategies (including passive and active methods), hormonal priming (through video feedback), post-activation potentiation, and modified hydro-nutritional practices are discussed. A theoretical model of applying these strategies in a manner that compliments current practice is also presented

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    High-intensity interval training improves VO2peak, maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers

    Get PDF
    Training volume in swimming is usually very high when compared to the relatively short competition time. High-intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. The main purpose of the present study was to examine the effects of a 5-week HIIT versus high-volume training (HVT) in 9–11-year-old swimmers on competition performance, 100 and 2,000 m time (T100 m and T2,000 m), VO2peak and rate of maximal lactate accumulation (Lacmax). In a 5-week crossover study, 26 competitive swimmers with a mean (SD) age of 11.5 ± 1.4 years performed a training period of HIIT and HVT. Competition (P < 0.01; effect size = 0.48) and T2,000 m (P = 0.04; effect size = 0.21) performance increased following HIIT. No changes were found in T100 m (P = 0.20). Lacmax increased following HIIT (P < 0.01; effect size = 0.43) and decreased after HVT (P < 0.01; effect size = 0.51). VO2peak increased following both interventions (P < 0.05; effect sizes = 0.46–0.57). The increases in competition performance, T2,000 m, Lacmax and VO2peak following HIIT were achieved in significantly less training time (~2 h/week)

    Effect of exercise on fluoride metabolism in adult humans: a pilot study

    Get PDF
    An understanding of all aspects of fluoride metabolism is critical to identify its biological effects and avoid fluoride toxicity in humans. Fluoride metabolism and subsequently its body retention may be affected by physiological responses to acute exercise. This pilot study investigated the effect of exercise on plasma fluoride concentration, urinary fluoride excretion and fluoride renal clearance following no exercise and three exercise intensity conditions in nine healthy adults after taking a 1-mg Fluoride tablet. After no, light, moderate and vigorous exercise, respectively, the mean (SD) baseline-adjusted i) plasma fluoride concentration was 9.6(6.3), 11.4(6.3), 15.6(7.7) and 14.9(10.0) ng/ml; ii) rate of urinary fluoride excretion over 0–8 h was 46(15), 44(22), 34(17) and 36(17) μg/h; and iii) rate of fluoride renal clearance was 26.5(9.0), 27.2(30.4), 13.1(20.4) and 18.3(34.9) ml/min. The observed trend of a rise in plasma fluoride concentration and decline in rate of fluoride renal clearance with increasing exercise intensity needs to be investigated in a larger trial. This study, which provides the first data on the effect of exercise with different intensities on fluoride metabolism in humans, informs sample size planning for any subsequent definitive trial, by providing a robust estimate of the variability of the effect

    Muscle fiber-type distribution predicts weight gain and unfavorable left ventricular geometry: a 19 year follow-up study

    Get PDF
    BACKGROUND: Skeletal muscle consists of type-I (slow-twitch) and type-II (fast-twitch) fibers, with proportions highly variable between individuals and mostly determined by genetic factors. Cross-sectional studies have associated low percentage of type-I fibers (type-I%) with many cardiovascular risk factors. METHODS: We investigated whether baseline type-I% predicts left ventricular (LV) structure and function at 19-year follow-up, and if so, which are the strongest mediating factors. At baseline in 1984 muscle fiber-type distribution (by actomyosin ATPase staining) was studied in 63 healthy men (aged 32–58 years). The follow-up in 2003 included echocardiography, measurement of obesity related variables, physical activity and blood pressure. RESULTS: In the 40 men not using cardiovascular drugs at follow-up, low type-I% predicted higher heart rate, blood pressure, and LV fractional shortening suggesting increased sympathetic tone. Low type-I% predicted smaller LV chamber diameters (P ≤ 0.009) and greater relative wall thickness (P = 0.034) without increase in LV mass (concentric remodeling). This was explained by the association of type-I% with obesity related variables. Type-I% was an independent predictor of follow-up body fat percentage, waist/hip ratio, weight gain in adulthood, and physical activity (in all P ≤ 0.001). After including these risk factors in the regression models, weight gain was the strongest predictor of LV geometry explaining 64% of the variation in LV end-diastolic diameter, 72% in end-systolic diameter, and 53% in relative wall thickness. CONCLUSION: Low type-I% predicts obesity and weight gain especially in the mid-abdomen, and consequently unfavourable LV geometry indicating increased cardiovascular risk

    Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running

    Get PDF
    Background: As a way to train at faster running speeds, add training volume, prevent injury, or rehabilitate after an injury, lower-body positive pressure treadmills (LBPPT) have become increasingly commonplace among athletes. However, there are conflicting evidence and a paucity of data describing the physiological and biomechanical responses to LBPPT running in highly trained or elite caliber runners at the running speeds they habitually train at, which are considerably faster than those of recreational runners. Furthermore, data is lacking regarding female runners’ responses to LBPPT running. Therefore, this study was designed to evaluate the physiological and biomechanical responses to LBPPT running in highly trained male and female distance runners. Methods: Fifteen highly trained distance runners (seven male; eight female) completed a single running test composed of 4 × 9-min interval series at fixed percentages of body weight ranging from 0 to 30% body weight support (BWS) in 10% increments on LBPPT. The first interval was always conducted at 0% BWS; thereafter, intervals at 10, 20, and 30% BWS were conducted in random order. Each interval consisted of three stages of 3 min each, at velocities of 14.5, 16.1, and 17.7 km·h−1 for men and 12.9, 14.5, and 16.1 km·h−1 for women. Expired gases, ventilation, breathing frequency, heart rate (HR), rating of perceived exertion (RPE), and stride characteristics were measured during each running speed and BWS. Results: Male and female runners had similar physiological and biomechanical responses to running on LBPPT. Increasing BWS increased stride length (p \u3c 0.02) and flight duration (p \u3c 0.01) and decreased stride rate (p \u3c 0.01) and contact time (p \u3c 0.01) in small-large magnitudes. There was a large attenuation of oxygen consumption (VO2) relative to BWS (p \u3c 0.001), while there were trivial-moderate reductions in respiratory exchange ratio, minute ventilation, and respiratory frequency (p \u3e 0.05), and small-large effects on HR and RPE (p \u3c 0.01). There were trivial-small differences in VE, respiratory frequency, HR, and RPE for a given VO2 across various BWS (p \u3e 0.05). Conclusions: The results indicate the male and female distance runners have similar physiological and biomechanical responses to LBPPT running. Overall, the biomechanical changes during LBPPT running all contributed to less metabolic cost and corresponding physiological changes. Keywords: AlterG, Lower-body positive pressure, Body weight support, Anti-gravity, Running, Stride characteristics, Physiological characteristics, Metabolic demand, Oxygen demand, Oxygen cos
    corecore