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Abstract:  

An understanding of all aspects of fluoride metabolism is critical to identify its biological effects and 

avoid fluoride toxicity in humans. Fluoride metabolism and subsequently its body retention may be 

affected by physiological responses to acute exercise. This pilot study investigated the effect of 

exercise on plasma fluoride concentration, urinary fluoride excretion and fluoride renal clearance 

following no exercise and three exercise intensity conditions in nine healthy adults after taking a 1-mg 

Fluoride tablet. After no, light, moderate and vigorous exercise, respectively, the mean (SD) baseline-

adjusted i) plasma fluoride concentration was 9.6(6.3), 11.4(6.3), 15.6(7.7) and 14.9(10.0) ng/ml; ii) 

rate of urinary fluoride excretion over 0-8h was 46(15), 44(22), 34(17) and 36(17) µg/h; and iii)  rate 

of fluoride renal clearance was 26.5(9.0), 27.2(30.4), 13.1(20.4) and 18.3(34.9) ml/min.   The 

observed trend of a rise in plasma fluoride concentration and decline in rate of fluoride renal clearance 

with increasing exercise intensity needs to be investigated in a larger trial. This study, which provides 

the first data on the effect of exercise with different intensities on fluoride metabolism in humans, 

informs sample size planning for any subsequent definitive trial, by providing a robust estimate of the 

variability of the effect. 
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Introduction: 

Fluoride (F) is a trace element which is naturally present in drinking water and all foods and drinks, 

especially tea and seafoods, at varying concentrations. Following absorption from the gastrointestinal 

tract, F is rapidly integrated into calcified tissues which contain 99% of body F. F status is of 

nutritional and public health significance and the American Dietetic Association1 has confirmed F as 

an important element for achieving and maintaining oral and bone health.  

A major decline in the prevalence and severity of dental caries has been seen in many countries 

worldwide as a result of appropriate exposure to F in different forms added to drinking water, salt or 

milk. In the UK, more than 10% of the population receives fluoridated water at a concentration of 

1mg/l and almost 40,000 school children, mainly in deprived areas where the water is not fluoridated, 

receive fluoridated milk at a dose of 0.5mg/189ml milk in order to reduce the prevalence of dental 

caries.  

Although low levels of F have an important role in prevention of dental caries, disturbances of enamel 

development (dental/enamel fluorosis) and bone homeostasis (skeletal fluorosis) can result from 

excessive retention of F in the body during tooth and bone development. Several factors are known to 

impact F metabolism and subsequently its retention in the body. An understanding of all aspects of F 

metabolism is critical to identify the biological effects of F and avoid F toxicity in humans.  

Almost one-quarter of ingested F is rapidly absorbed from the stomach as hydrogen-fluoride and most 

of the remainder is absorbed more slowly from the proximal small intestine2. Plasma F concentration 

reaches its peak 30-60min after F ingestion and returns to pre-ingestion levels during the next few 

hours depending on the F dose3. Approximately half of the absorbed F, in healthy adults and under 

normal conditions, binds to calcified tissues as flurohydroxyapatite while the remainder is excreted in 

urine. However, there is a considerable variation in the renal clearance of F among individuals which 

is dependent on a number of physiological and environmental factors. It has been suggested that, after 

entering the renal tubules, 10-90% of ionic F might be reabsorbed and returned to systemic 

circulation2. Since the mechanism of renal tubular reabsorption of F is pH-dependent, factors 

influencing acid-base status and urinary pH including certain drugs, high altitude, some respiratory 

diseases, metabolic diseases and physical activity can affect urinary F excretion and therefore F 

retention2,3. 

It has been suggested4 that the current UK milk fluoridation scheme does not provide adequate 

protection against dental caries in children. Since fluoridated milk is given to British children on 

school days at their mid-morning break before going to the playground, the intensity of any exercise 

undertaken in the post-ingestion period, a potentially important factor in nutrient metabolism, might 
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impact the ability of the body to retain F. No study on the effect of exercise on F pharmacokinetics 

has been undertaken in humans and there is very limited evidence on the effect of exercise on F 

metabolism in laboratory animals. Two studies with rats, which were exposed to an exercise regime of 

0.3m/sec and 2.25m/min respectively for 1h on a treadmill, reported 58-76% higher F levels in plasma 

of non-exercised rats compared with exercised  rats3,5,6. The study by Lombarte et al (2013)5, in which 

rats exercised for 30 days for 60 min at low intensity found a significantly higher F content of bones 

in the exercised rats. Although the effect of exercise on F metabolism was not directly investigated in 

two other studies with rats exposed to high NaF (600ppm), through drinking water for one month7,8, 

an improvement in antioxidant status of the animals by the combined effect of temperature (25C and 

30C) and exercise (swimming; 45min/day for 10 days) was reported. 

It is well known that exercise benefits bone health in children9 and adults10. Exercise is associated 

with reduced expression of osteocytes and increased expression of osteoblasts11. F is also one of only 

a few known agents that can stimulate osteoblast proliferation1. However, F demonstrates biphasic 

dose relationships being stimulatory to the precursors of osteoblasts at low doses and inhibitory to 

osteoclasts at high doses12. 

Given the multiple health benefits of exercise13, several policy and environmental interventions have 

been implemented worldwide to promote and increase physical activity in communities14. However, 

very limited evidence and only from animal studies, is available on the effect of exercise on F 

metabolism. Therefore, in order to understand its effects in humans, this pilot study aimed to evaluate 

urinary F excretion (UFE) and plasma F concentration in young adults undergoing acute exercise with 

different intensities following ingestion of a 1mgF tablet (2.2mg NaF). 

Methods: 

Ethical approval 

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all 

procedures involving human subjects were approved by Teesside University, School of Health and 

Social Care Research and Governance Ethics Committee (protocol number: 154/13). Written 

informed consent was obtained from all participants prior to the experiment.  

Experimental Design 

This pilot study was a human experiment with a randomised cross-over design, comparing 

observations within individuals. The sample size for this pilot study was considered based on the early 

animal studies by Whitford (n=8)3 and the recent study by Lombarte et al (n=10)5.   
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Participants 

Ten healthy male and female adults, aged between 20-35y, volunteered to take part in the study. 

Inclusion criteria were: being resident in a non-fluoridated water area (<0.3ppmF) for more than a 

year, as well as being moderately active and fit enough to take part in the prescribed exercise. 

Physical activity level and contra-indications to participate in physical activity were assessed 

respectively using the International Physical Activity Questionnaire15 and a Physical Activity 

Readiness Questionnaire16. 

Pre-experimental Procedures 

After obtaining written informed consent, participants were asked to attend a pre-experimental 

session, one week before the trial, when background nocturnal urine and fasted blood samples 

(Background/pre-washout samples) were collected. At this session, the power output of the cycle 

ergometer (PowerTap Cycleops400, USA) was determined based on each participant’s Rate of 

Perceived Exertion (RPE) according to the Category Ratio Scale of Perceived Exertion (CR-10 RPE 

scale) 17. The exercise intensities were set as: light intensity (RPE=3), moderate intensity (RPE=5), 

and vigorous intensity (RPE=7).  Heart rate was monitored during all exercise sessions with a heart 

rate monitor (Polar FF5, Polar Electro Oy, Finland) and recorded every minute during exercise. 

F-free toothpastes were given to participants and they were asked to avoid using any F products for a 

one week wash-out period before as well as during the experimental period. They were also asked to 

avoid drinking tea, beer and tap-water (if leaving their stated residential area) and eating seafood 

during the washout and experimental periods. The subjects were asked to refrain from performing 

exercise other than habitual walking 48h prior to and during experimental sessions. 

Experimental procedure and sample collection 

After the one-week washout period, each participant underwent four randomly allocated experimental 

sessions including one no-exercise session and three exercise sessions at different intensities (light, 

moderate and vigorous) with approximately a one week interval between sessions (Figure 1).  

All sessions were conducted in an exercise laboratory at the same time of day. Exercise sessions 

consisted of a 5min, self-selected speed warm up followed by 20min of exercise on a stationary 

exercise cycle ergometer at the allocated intensity. 

On each experimental session, a baseline venous blood sample (5ml) was collected from each 

participant after an overnight fast. Participants were then provided with a low-F breakfast (<10µgF) 

which comprised a cereal bar, a banana and 200ml orange squash prepared with non-fluoridated 
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bottled water (1:10v/v). The same food and drink items were consumed at the same time in each of 

the four sessions by all participants. After 30min, at approximately 09:00am, participants were given a 

1mgF tablet (Fluor-a-day 2.2mg NaF, Dental Health Products Ltd, UK) to swallow. The exercise 

session took from 09:00 to 09:30am. A second venous blood sample was collected, 50min after 

ingestion of the F tablet, at about 09:50am.  

Urine samples were collected by spontaneous voiding over a 24h period during the following time 

periods: 

1. One nocturnal pooled urine sample from midnight before the experimental session until 

09.00am (baseline, pre-F tablet/pre-exercise); 

2. One pooled urine sample from 09.00am to 12.00pm during the experimental session (0-3h 

post-F tablet); 

3. One pooled urine sample from 12.00pm to 17.00pm during the experimental session (3-8h 

post-F tablet); and  

4. One pooled sample from 17.00pm through to just before bed-time (~23.00pm) on the 

experimental day (8-14h post-F tablet). 

Analytical Procedure 

Urinary F concentration (g/ml) was measured directly after adding total ionic strength adjustment 

buffer III (Orion Research) to standards and samples using a F-ion-selective electrode (F ISE). F 

concentrations in plasma (ng/ml) and breakfast items (µg/g) were measured, in triplicate, using a F-

ion-selective electrode (Model 9609:Orion Research) coupled to a potentiometer (Model 720A) by a 

hexamethyldisiloxane (HMDS)-facilitated diffusion method 18,19. This method, which was developed 

based on Taves method19 through an international collaborative project, has been previously reported 

in detail 18. In summary, 1 ml H2SO4 saturated with HMDS was added to 1 ml sample (and standards) 

in a petri-dish and left at room temperature to diffuse overnight. The released F was trapped in an 

alkaline solution (50 µl of NaOH (0.05N), which was placed as 5 drops on the inside of the dish lid). 

After a minimum of 16h diffusion, the lid was removed and 20 µl acetic acid (0.20N) was added and 

combined with the NaOH into a single drop of 75 µl. The F-ISE electrode was then placed in contact 

with the 75 µl solution and the mV reading recorded. A calibration curve was used to calculate F 

concentration of the sample. 

Routinely, the standard operating procedure includes using a Standard Reference Material (SRM) to 

check the validity of the F analytical method. To the best of our knowledge, there is no SRM for 

plasma.  However, the SRM 2668 (Toxic Elements in Frozen Human Urine), produced by the 

National Institute of Standards & Technology (NIST, Gaithersburg, MD, US) has been used a quality 
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assurance measure. The SRM 2668 comprises human urine at two levels of F (Level I and Level II) 

with a mean (SD) F concentration of 12.25 (0.14) and 18.83 (0.92) ppmF, respectively. The results for 

both levels have always been within the range (“mean – SD” and “mean + SD”) of F concentrations 

noted in the NIST certificate. 

In addition, the reliability of the methods used was specifically confirmed by re-analysis of a 

minimum 10% of samples. In each session, 10% of samples was randomly selected for re-analysis, 

however, the re-analysis experiment was not performed on the same day as when the original samples 

were analysed in order to confirm between-day reproducibility. In total, 153 urine samples [(9 pre-

washout samples @ one pre-washout sample/participant) + (144 post-washout/experimental samples 

@ 4 samples/session/participant x 4 sessions/participant x 9 participants)] were collected of which 16 

were randomly selected for re-analysis. The total number of collected plasma samples was 81 [(9 pre-

washout samples @ one pre-washout sample/participant) + (72 post-washout/experimental samples @ 

2 samples/session/participant x 4 sessions/participant x 9 participants) of which 11 were randomly 

selected for reanalysis. All sample analysis and re-analysis was conducted in triplicate. 

 

Data analysis 

Age-predicted maximal heart rate (HR) was estimated using the Tanaka et al equation (208 − 0.7 × 

age)20. Percentage of heart rate maximum (%HRmax) was estimated from the average heart rate of 

each participant at different exercise intensities.  

For each participant, urinary F excretion (UFE) in each individual time-controlled urine sample (g) 

was quantified by multiplying the concentration of F (g/ml) in each sample by its corresponding 

volume (ml). The Baseline UFE was subtracted from the UFE of each sample to derive the ‘Baseline-

adjusted’ UFE. Total post-F tablet (Periods 2-4 inclusive: 14h) UFE was calculated by summing the 

amount of F excreted in urine for the periods during and after each experimental session for each 

participant. Since urinary excretion of F returns to almost baseline values within the first 8h after 

consumption of a F supplement (Ekstrand et al. 1994), the 8h UFE was also calculated by summing 

the amount of F excreted in individual urine samples collected from 09.00am to 17.00pm (during 

periods 2 and 3). The UFE rate (g/h) for each individual time-controlled urine sample was calculated 

by dividing UFE (g) by the duration of the corresponding collection period (h).  

The baseline plasma F concentration was subtracted from the F concentration in each plasma sample 

to derive the ‘Baseline-adjusted’ plasma F concentration.  
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The rate of F renal clearance (ml/min) for each individual at baseline (pre-) and 0-3h post-F tablet was 

calculated by dividing rate of UFE per minute by plasma F concentration. The ‘Baseline-adjusted’ F 

renal clearance was then determined by subtracting post-exercise F renal clearance from baseline F 

renal clearance.   

Statistical Analysis 

Data analyses were conducted using SPSS (version 21). Paired t-tests were applied to compare 

Background (pre-experimental) and Baseline nocturnal urine volumes and UFEs as well as fasted 

plasma F concentrations. The mean difference and 95% confidence interval (CI) for fasting plasma F 

concentration, urine volume and UFE between Background (pre-washout) and Baseline (pre-exercise) 

are presented.  

However, due to the study being a pilot experiment to inform any subsequent definitive trial, only 

descriptive comparisons between control (no-exercise) and treatment (3 exercise intensities) were 

undertaken and the data are presented as mean and standard deviations. 

Results: 

Nine participants (4 males and 5 females) completed all aspects of the study. The mean (SD) age, 

weight, height and body mass index (BMI) of all participants was 24.7 (3.5) y, 67.7 (13.5) kg, 168.6 

(11.3) cm and 24 (3) kg/m2, respectively (Table 1). 

Accuracy of the analytical method 

The accuracy of the analytical method was confirmed by comparing the analysis and re-analysis 

measurements. The results showed no statistically significant differences between the two 

measurements with a mean (SD) difference of 0.009 (0.033) mgF/l for urine samples (n=16) and 1.62 

(2.56) ngF/ml for plasma samples (n=11). The correlation between the analysis and re-analysis 

measurements was r=0.997 (p<0.001) for urine and r=0.978 (p<0.001) for plasma samples. 

Comparison of Background (pre-experimental) and Baseline data 

The mean (SD) Background (pre-washout) and Baseline (pre-exercise) fasting plasma F 

concentration, nocturnal urine volume, urinary F concentration and UFE are presented in Table 2. The 

fasting plasma F concentration was significantly (p<0.001) higher at Background compared with 

Baseline. However, no significant between-week differences in Baseline fasting plasma F 

concentrations were observed. There were no significant differences in either nocturnal urine volume, 

or urinary F concentration or nocturnal UFE between Background and Baseline. 
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Comparison of control and different exercise intensities 

Mean (SD) workload on the cycle ergometer for the different exercise intensities was 85.4 (8.7), 113.2 

(16.2) and 129.6 (21.2) Watts for light, moderate and vigorous intensities, respectively. The mean 

(SD) % HRmax at light, moderate and vigorous intensities was 67 (10), 76 (11), 82 (9)% respectively. 

The mean (SD) UFE at different time periods during the 24h experimental session for control and 

each type of exercise regime is presented in Table 3. No substantial differences in UFE were found 

between control and the three different exercise intensities for any individual- as well as pooled-time 

periods. 

The mean Baseline-adjusted UFE rates across the time-controlled periods of collection are shown in 

Figure 2. The mean Baseline-adjusted UFE rate tended to be higher for light intensity exercise over 

the first 3h period after exercise, whereas it tended to be higher for the control conditions over the 3-

8h time controlled period. In general, moderate intensity exercise had a tendency to result in the 

lowest Baseline-adjusted UFE rate after exercise for all time controlled periods (0-3h, 3-8h and 8-

14h).  

The overall mean Baseline-adjusted UFE rate over the 8h post F ingestion period and mean Baseline-

adjusted fasting plasma F concentration are shown in Figure 3. Moderate and vigorous intensity 

exercise resulted in lower mean Baseline-adjusted UFE rates over the 8h period (34 and 36µg/h, 

respectively) in comparison with the control (46µg/h), whereas a higher plasma F concentration was 

found for moderate (15.6ng/ml) and vigorous (14.9ng/ml) intensity exercise compared with the 

control (9.6ng/ml).  

The mean (SD)  Baseline-adjusted F renal clearance was 26.5 (9.0), 27.2 (30.4), 13.1 (20.4) and 18.3 

(34.9) ml/min for no, light, moderate and vigorous exercise, respectively. 

Discussion: 

This study provides the first data on the effect of exercise with different intensities on plasma F 

concentration, renal F excretion and rate of F renal clearance in humans. The results suggests a rise in 

plasma F concentration and a decline in renal F excretion and clearance rates with increasing exercise 

intensity.  

The study participants were young adults with a fairly narrow age range to minimise age-related 

variability in plasma F concentration between individuals (i.e. stage of skeletal development and rates 

of bone accretion and resorption). The present study showed a mean Background (pre-washout) 

fasting plasma F concentration of 62.0ng/ml which was considerably higher than the corresponding 
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figure of 19.3ng/ml reported for a group of adults of similar age in the UK21. The high fasting plasma 

F concentration in the present study was mainly due to brushing with a fluoridated-toothpaste 

(1400ppmF) by participants in the morning just before attending the pre-experimental session. 

However, there was a statistically significant drop in the mean fasting plasma F concentration (to 

12.4ng/ml) at Baseline (pre-exercise) which was primarily a result of switching to a non-fluoridated 

toothpaste during the washout and experimental period. The mean Baseline fasting plasma F 

concentration in the present study was consistent with the corresponding value of 

10.5ng/ml22,12.7ng/ml3, 12.4ng/ml23 and 13.3ng/ml24 reported for adults living in non-fluoridated 

areas.  

Although daily UFE has been recognized as a biomarker for short-term F exposure, overnight fasting 

F concentration has been suggested as a useful indicator of chronic F exposure or potential bone F 

concentrations25. In the present study, no significant difference in the mean nocturnal UFE between 

Background and Baseline was found which can be explained by the dynamic relationship and fixed 

ratio between F concentrations in the extra-cellular fluid pools and the exchangeable pool in calcified 

tissues. When F intakes are very low, plasma F concentration declines and as a consequence F ion 

mobilizes from calcified tissues to extra-cellular fluid to maintain the fixed ratio of the F 

concentrations. This in turn results in a UFE at least as great as when F intakes are at a rather higher 

level3,26.  

It has been suggested that plasma F concentration reaches its peak within 20-60min following F 

ingestion3. However, in the present study the preferred timing of the second blood collection (i.e. 

50min after F ingestion) was based on more recent studies which have reported narrow ranges in peak 

plasma F concentration from 48 to 52min in English adults (21-35y)21 and from 44 to 56min in 

Brazilian adults (24-32y)27. Since UFE returns to baseline values in less than 8h after consumption of 

a given F dose26, in the present study UFE over the 8h following ingestion of the F tablet was 

determined and adjusted for baseline excretion to estimate the F excretion attributable to F dose.  

In the present pilot study, the length of time for a ‘wash-out’ period was determined based on the 

previous studies in children and adults which have reported a rapid decrease in circulating F in the 

body of young children in the first 24 hours after discontinuation of F from water and toothpaste28, in 

contrast to a relatively constant UFE in adults being reached in one week following fluoridation of 

water29. 

A trend in plasma F concentration, renal F excretion and rate of F renal clearance with an increase in 

exercise intensity was observed in this pilot study. The results showed a  higher Baseline-adjusted 

plasma F concentrations following moderate (15.6ng/ml) and vigorous (14.9ng/ml) intensity exercise 

compared to light intensity (11.4ng/ml) and no (9.6ng/ml) exercise, implying a direct correlation 
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between exercise intensity and plasma F level. A lower Baseline-adjusted UFE over the 8h period as 

well as F renal clearance for the moderate and vigorous intensity exercise regimes compared with no- 

and light exercise (Figure 3) suggest an increase in exercise intensity would decrease renal excretion 

of F.  

In the present study, the exercise workloads and %HR max for the moderate and vigorous intensity 

groups were similar which could explain the similar results seen at these intensities.   On the other 

hand the mean difference in exercise workload between the light and moderate exercise was quite 

noticeable (27.9 Watts), whereas the corresponding difference (16.4 Watts) between moderate and 

vigorous exercise was substantially lower.  Similarly, the difference in exercise %HRmax between 

moderate and vigorous exercise was only 6%.  It has been suggested heart rate should be 64 to 76% 

HRmax for moderate intensity exercise, while for vigorous intensity the range is 77 to 93% HRmax30. 

The average values in the present study were 76% for moderate and 82% for vigorous exercise, 

indicating a marginal difference between the two intensities. Future studies with exercise of a more 

vigorous nature (RPE>7; ̴ 90%HR max) may provide a better understanding of the physiological 

adaptations which occur at higher intensities.  

In general, the present study found a large SD (i.e. variation) for renal clearance of F (e.g. mean (SD) 

for vigorous exercise: 18.3 (34.9) ml/min, indicating a wide variability among individuals at this 

intensity, while the variation was slightly less for light and moderate exercise 27.2(30.4) and 

13.1(20.4), respectively. The literature also shows a wide variation in renal clearance of F from 12.4 

to 71.4 ml/min31-33. 

The pharmacokinetics of F can be influenced by physiological responses to exercise; however, the 

mechanisms by which exercise could affect F metabolism are not quite established. The renal 

clearance of F is directly associated with the pH in the renal tubules;  a more alkaline urine is likely to 

increase F excretion. Therefore, the reported increase in urinary bicarbonate and pH with increasing 

exercise intensity34 implies a higher urinary F excretion. On the other hand, exercise increases 

sympathetic nervous system activity which might result in a 50% reduction in gastrointestinal 

secretion and blood flow35. This response might therefore reduce the rate and degree of 

gastrointestinal absorption of F, however some studies have reported no effect of exercise on gastric 

empting rate35. Production of lactic acid might push diffusion of F from extracellular to intracellular 

fluids and consequently a rise in the rate of F uptake by bone and other tissues which would therefore 

reduce plasma F concentration. Conversely, plasma F concentration may increase during exercise as a 

result of decreasing renal F excretion due to; a) vasoconstriction within the kidneys with reduction of 

renal blood flow and glomerular filtration rate due to increased sympathetic nervous system activity 
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during exercise and; b) increased reabsorption of F from the renal tubules as a result of acidification 

of tubular fluid due to the lactic acid production during exercise6. 

There are several reports on the effect of exercise at low intensity in rats but none in humans. In two 

similar but separate studies3,6, plasma F concentration was measured following either gastric 

intubation or intravenous administration of a single F dose of 5mgF/kg in rats exposed to one week of 

light intensity (0.3m/s) exercise on a treadmill for one hour. These two studies showed a significantly 

lower plasma F concentration in exercised rats (n=8) compared with non-exercised rats (n=8) with 

intra-gastric F dosing but no differences with intravenous F dosing. This suggested that the main 

effect of light exercise on F metabolism in rats was on the rate of gastrointestinal absorption of F. A 

recent study in which rats received 15mgF/l in their drinking water for 30 days, also reported a 

significant reduction in plasma F concentration after running on a treadmill for 60min at a light 

intensity for 30 days (n=10) compared to a non-exercise group (n=10)5.  

In contrast with the animal studies, the present study with humans showed no effect of light exercise 

on plasma F concentration which could be due to differences in F dose and/or species (rat vs human). 

Although studies with an animal model allows easier control of the environment and a more in-depth 

analysis of F metabolism in different organs/tissues, there are some limitations in the use of animal 

models to reach appropriate conclusions regarding human F metabolism36. When rat animal models 

are used to study pharmacokinetics of F, it has been suggested that the F dose should be 4-5 times 

greater than that used in humans to achieve similar levels of F in plasma37. The water F concentration 

(15mg/l) tested in the study by Lombarte et al (2013)5 therefore corresponds to a water F 

concentration of 3mg/l in humans. Studies looking at the effect of exercise might be better conducted 

in other animals which can perform moderate-to-heavy exercise rather than in rats which are reluctant 

runners. Among common laboratory animals, the canine model has been reported to provide more 

resemblance to the major features of human F pharmacokinetics3.  

In conclusion, the observed rise in plasma F concentration and decline in renal clearance of F with 

increasing exercise intensity needs to be investigated in a larger trial. The findings of this pilot study 

could provide a robust estimate of the variability of the effect of exercise on F metabolism to inform 

sample size planning for any subsequent definitive trial. 
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Table 1. Age, height, weight and body mass index (BMI) of individuals who participated in the study 

(n=9). 

 

Participant Sex Age 
Height 

(cm) 

Weight 

(kg) 

BMI 

(kg/m2) 

1 Female 22 163.6 72.3 27 

2 Female 26 149.8 52.1 23 

3 Male 24 168.3 70.4 25 

4 Male 32 184 92.4 27 

5 Male 23 184.5 80.3 24 

6 Female 24 170.6 68.1 23 

7 Male 21 174.5 52.7 17 

8 Female 28 159.8 53.5 21 

9 Female 22 162 67.5 26 

Mean  24.7 168.6 67.7 24 

SD  3.5 11.3 13.5 3 
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Table 2. Mean (SD) Background (pre-washout) and Baseline (pre-exercise) fasting plasma F concentration (Fasting F-plasma: ng/ml), nocturnal urine volume 

(ml), urinary F concentration (mg/l) and urinary F excretion (UFE: mg); and mean (95% Confidence Interval) differences between pre- and post-washout 

values. 

 

Session Fasting plasma-F 

(ng/ml) 

Urine volume 

(ml) 

Urinary F concentration 

(mg/l) 

UFE 

(mg) 

Background (pre-washout) 62.0 (20.3) 358 (102) 0.625 (0.347) 0.207 (0.084) 

Baseline (post-washout, pre-exercise):     

Week 1 11.6 (2.1) 434 (224) 0.317 (0.259) 0.134 (0.072) 

Week 2 18.0 (6.9) 389 (248) 0.458 (0.345) 0.176 (0.136) 

Week 3 11.8 (5.1) 391 (168) 0.337 (0.172) 0.114 (0.037) 

Week 4 9.7 (1.8) 438 (259) 0.351 (0.276) 0.141 (0.113) 

Mean 12.8 (5.5) 414 (221) 0.377 (0.262) 0.142 (0.097) 

Differences between Background and mean Baseline:     

Mean (95% Confidence Interval) +49.3 (+34.1, +64.5) -81 (-224, +62) +0.217 (-0.011, +0.445) +0.048 (-0.028, +0.125) 

P value <0.001 0.22 0.06 0.13 
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Table 3. Mean (SD) UFE (mg) for different time controlled periods during each 24h experimental session for control and the three exercise intensities. 

 

Session Individual time period  Pooled time periods 

 Baseline1  0-3 h2  3-8 h3  8-14 h4  0-8 h5  0-14 h6 

Control 0.123 (0.083)  0.294 (0.097)  0.229 (0.110)  0.157 (0.103)  0.502 (0.167)  0.703 (0.243) 

Light exercise  0.154 (0.099)  0.330 (0.147)  0.198 (0.118)  0.184 (0.076)  0.529 (0.193)  0.808 (0.361) 

Moderate exercise  0.145 (0.109)  0.267 (0.099)  0.178 (0.117)  0.154 (0.060)  0.424 (0.163)  0.697 (0.189) 

Vigorous exercise  0.144 (0.108)  0.227 (0.103)  0.190 (0.094)  0.180 (0.099)  0.411 (0.170)  0.715 (0.279) 

 

1 Nocturnal pooled urine sample from midnight before the experimental session until 9am on the experimental day before taking F tablet (baseline, pre-F 

tablet); 

2 Pooled urine sample from 09.00am to 12.00pm during the experimental session (0- 3h post-F tablet); 

3 Pooled urine sample from 12.00pm to 17.00pm during the experimental session (3-8h post-F tablet);  

4 Pooled urine sample from 17.00pm through to just before bed-time (~23.00pm) on the experimental day (8-14h post-F tablet). 

5 Combined 0-3h and 3-8h values 

6 Combined 0-3h, 3-8h and 8-14h values 
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Figure 1. Experimental procedure and sample collection   

After the one-week washout period, each participant underwent four randomly allocated experimental 

sessions including one no-exercise session and three exercise sessions at different intensities (light, 

moderate and vigorous) with approximately a one week interval between sessions. 

 

Figure 2. Mean Baseline-adjusted UFE rate (µg/h) across the time-controlled periods of 

collection according to exercise intensity.   

The mean Baseline-adjusted UFE rate tended to be higher for light intensity exercise over the first 3h 

period after exercise, whereas it tended to be higher for the control conditions over the 3-8h time 

controlled period. In general, moderate intensity exercise had a tendency to result in the lowest 

Baseline-adjusted UFE rate after exercise for all time controlled periods (0-3h, 3-8h and 8-14h).  

 

Figure 3. Mean (SE) Baseline-adjusted plasma F concentration (ng/ml) and mean (SE) Baseline-

adjusted UFE rate (µg/h) over the 8h post F ingestion period. 

Moderate and vigorous intensity exercise resulted in lower mean Baseline-adjusted UFE rates over the 

8h period  in comparison with the control, whereas a higher plasma F concentration was observed for 

moderate  and vigorous intensity exercise compared with the control.  
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