426 research outputs found
New proof-of-concept in viral inactivation: virucidal efficacy of 405 nm light against feline calicivirus as a model for norovirus decontamination
The requirement for novel decontamination technologies for use in hospitals is ever present. One such system uses 405 nm visible light to inactivate microorganisms via ROS-generated oxidative damage. Although effective for bacterial and fungal inactivation, little is known about the virucidal effects of 405 nm light. Norovirus (NoV) gastroenteritis outbreaks often occur in the clinical setting, and this study was designed to investigate potential inactivation effects of 405 nm light on the NoV surrogate, feline calicivirus (FCV). FCV was exposed to 405 nm light whilst suspended in minimal and organically-rich media to establish the virucidal efficacy and the effect biologically-relevant material may play in viral susceptibility. Antiviral activity was successfully demonstrated with a 4 Log10 (99.99%) reduction in infectivity when suspended in minimal media evident after a dose of 2.8 kJ cm−2. FCV exposed in artificial faeces, artificial saliva, blood plasma and other organically rich media exhibited an equivalent level of inactivation using between 50–85% less dose of the light, indicating enhanced inactivation when the virus is present in organically-rich biologically-relevant media. Further research in this area could aid in the development of 405 nm light technology for effective NoV decontamination within the hospital environment
The X-ray eclipse of the dwarf nova HT CAS observed by the XMM-Newton satellite: spectral and timing analysis
A cataclysmic variable is a binary system consisting of a white dwarf that
accretes material from a secondary object via the Roche-lobe mechanism. In the
case of long enough observation, a detailed temporal analysis can be performed,
allowing the physical properties of the binary system to be determined. We
present an XMM-Newton observation of the dwarf nova HT Cas acquired to resolve
the binary system eclipses and constrain the origin of the X-rays observed. We
also compare our results with previous ROSAT and ASCA data. After the spectral
analysis of the three EPIC camera signals, the observed X-ray light curve was
studied with well known techniques and the eclipse contact points obtained.
The X-ray spectrum can be described by thermal bremsstrahlung of temperature
keV plus a black-body component (upper limit) with
temperature eV. Neglecting the black-body, the bolometric
absorption corrected flux is erg
s cm, which, for a distance of HT Cas of 131 pc, corresponds to a
bolometric luminosity of erg s.
The study of the eclipse in the EPIC light curve permits us to constrain the
size and location of the X-ray emitting region, which turns out to be close to
the white dwarf radius. We measure an X-ray eclipse somewhat smaller (but only
at a level of ) than the corresponding optical one. If this
is the case, we have possibly identified the signature of either high latitude
emission or a layer of X-ray emitting material partially obscured by an
accretion disk.Comment: Accepted for publication on Astronomy and Astrophysics, 200
Enthesiale Veraenderungen (Entheseal changes), In: Neue Erkenntnisse zur frühmittelalterlichen Separatgrablege von Niederstotzingen, Kreis Heidenheim (New results from the cemetery of Niederstotzingen)
An ISOCAM survey through gravitationally lensing galaxy clusters. III. New results from mid-infrared observations of th e cluster Abell 2219
The massive cluster of galaxies Abell 2219 (z = 0.228) was observed at 14.3
m with the Infrared Space Observatory and results were published by
Barvainis et al. (1999). These observations have been reanalyzed using a method
specifically designed for the detection of faint sources that had been applied
to other clusters. Five new sources were detected and the resulting cumulative
total of ten sources all have optical counterparts. The mid-infrared sources
are identified with three cluster members, three foreground galaxies, an
Extremely Red Object, a star and two galaxies of unknown redshift. The spectral
energy distributions (SEDs) of the galaxies are fit with models from a
selection, using the program GRASIL. Best-fits are obtained, in general, with
models of galaxies with ongoing star formation. For three cluster members the
infrared luminosities derived from the model SEDs are between ~5.7x10^10 Lsun
and 1.4x10^11 Lsun, corresponding to infrared star formation rates between 10
and 24 Msun yr^-1. The two cluster galaxies that have optical classifications
are in the Butcher-Oemler region of the color-magnitude diagramme. The three
foreground galaxies have infrared luminosities between 1.5x10^10 Lsun and
9.4x10^10 Lsun yielding infrared star formation rates between 3 and 16 Msun
yr^-1. Two of the foreground galaxies are located in two foreground galaxy
enhancements (Boschin et al. 2004). Including Abell 2219, six distant clusters
of galaxies have been mapped with ISOCAM and luminous infrared galaxies (LIRGs)
have been found in three of them. The presence of LIRGs in Abell 2219
strengthens the association between luminous infrared galaxies in clusters and
recent or ongoing cluster merger activity.Comment: 8 pages, 4 figures, A&A accepted, full paper with high-resolution
figures available at http://bermuda.ucd.ie/~dcoia/papers/. Reference adde
Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
Clinical significance of VEGF-A, -C and -D expression in esophageal malignancies
Vascular endothelial growth factors ( VEGF)- A, - C and - D are members of the proangiogenic VEGF family of glycoproteins. VEGF-A is known to be the most important angiogenic factor under physiological and pathological conditions, while VEGF-C and VEGF-D are implicated in the development and sprouting of lymphatic vessels, so called lymphangiogenesis. Local tumor progression, lymph node metastases and hematogenous tumor spread are important prognostic factors for esophageal carcinoma ( EC), one of the most lethal malignancies throughout the world. We found solid evidence in the literature that VEGF expression contributes to tumor angiogenesis, tumor progression and lymph node metastasis in esophageal squamous cell carcinoma ( SCC), and many authors could show a prognostic value for VEGF-assessment. In adenocarcinoma (AC) of the esophagus angiogenic properties are acquired in early stages, particularly in precancerous lesions like Barrett's dysplasia. However, VEGF expression fails to give prognostic information in AC of the esophagus. VEGF-C and VEGF-D were detected in SCC and dysplastic lesions, but not in normal mucosa of the esophagus. VEGF-C expression might be associated with lymphatic tumor invasion, lymph node metastases and advanced disease in esophageal SCC and AC. Therapeutic interference with VEGF signaling may prove to be a promising way of anti-angiogenic co-treatment in esophageal carcinoma. However, concrete clinical data are still pending
- …
