1,357 research outputs found

    A multiwavelength approach to the SFR estimation in galaxies at intermediate redshifts

    Get PDF
    We use a sample of 7 starburst galaxies at intermediate redshifts (z ~ 0.4 and z ~ 0.8) with observations ranging from the observed ultraviolet to 1.4 GHz, to compare the star formation rate (SFR) estimators which are used in the different wavelength regimes. We find that extinction corrected Halpha underestimates the SFR, and the degree of this underestimation increases with the infrared luminosity of the galaxies. Galaxies with very different levels of dust extinction as measured with SFR(IR)/SFR(Halpha, uncorrected for extinction) present a similar attenuation A[Halpha], as if the Balmer lines probed a different region of the galaxy than the one responsible for the bulk of the IR luminosity for large SFRs. In addition, SFR estimates derived from [OII]3727 match very well those inferred from Halpha after applying the metallicity correction derived from local galaxies. SFRs estimated from the UV luminosities show a dichotomic behavior, similar to that previously reported by other authors in galaxies at z <~ 0.4. Here we extend this result up to z ~ 0.8. Finally, one of the studied objects is a luminous compact galaxy (LCG) that may be suffering similar dust-enshrouded star formation episodes. These results highlight the relevance of quantifying the actual L(IR) of LCGs, as well as that of a much larger and generic sample of luminous infrared galaxies, which will be possible after the launch of SIRTF.Comment: Accepted for publication in The Astrophysical Journa

    Automated spectroscopic abundances of A and F-type stars using echelle spectrographs I. Reduction of ELODIE spectra and method of abundance determination

    Get PDF
    This paper presents an automated method to determine detailed abundances for A and F-type stars. This method is applied on spectra taken with the ELODIE spectrograph. Since the standard reduction procedure of ELODIE is optimized to obtain accurate radial velocities but not abundances, we present a more appropriate reduction procedure based on IRAF. We describe an improvement of the method of Hill & Landstreet (1993) for obtaining Vsini, microturbulence and abundances by fitting a synthetic spectrum to the observed one. In particular, the method of minimization is presented and tested with Vega and the Sun. We show that it is possible, in the case of the Sun, to recover the abundances of 27 elements well within 0.1 dex of the commonly accepted values.Comment: 12 pages, 10 figures, accepted for publication in A&

    Evolution of Li, Be and B in the Galaxy

    Get PDF
    In this paper we study the production of Li, Be and B nuclei by Galactic cosmic ray spallation processes. We include three kinds of processes: (i) spallation by light cosmic rays impinging on interstellar CNO nuclei (direct processes); (ii) spallation by CNO cosmic ray nuclei impinging on interstellar p and 4He (inverse processes); and (iii) alpha-alpha fusion reactions. The latter dominate the production of 6Li and 7Li. We calculate production rates for a closed-box Galactic model, verifying the quadratic dependence of the Be and B abundances for low values of Z. These are quite general results and are known to disagree with observations. We then show that the multi-zone multi-population model we used previously for other aspects of Galactic evolution produces quite good agreement with the linear trend observed at low metallicities without fine tuning. We argue that reported discrepancies between theory and observations do not represent a nucleosynthetic problem, but instead are the consequences of inaccurate treatments of Galactic evolution.Comment: 26 pages, 5 figures, LaTeX. The Astrophysical Journal, in pres

    Viscosities of the Gay-Berne nematic liquid crystal

    Full text link
    We present molecular dynamics simulation measurements of the viscosities of the Gay-Berne phenomenological model of liquid crystals in the nematic and isotropic phases. The temperature dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment.Comment: 11 pages, 4 Postscript figures, Revte

    The chromospheric emission of solar-type stars in the young open clusters IC 2391 and IC 2602

    Get PDF
    In this paper we present chromospheric emission levels of the solar-type stars in the young open clusters IC 2391 and IC 2602. High resolution spectroscopic data were obtained for over 50 F, G, and K stars from these clusters over several observing campaigns using the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Unlike older clusters, the majority (28/52) of the solar-type stars in the two clusters are rapid-rotators (vsini > 20 km/s) with five of the stars being classified as ultra-rapid rotators (vsini > 100 km/s). The emission levels in the Calcium infrared triplet lines were then used as a measure of the chromospheric activity of the stars. When plotted against Rossby number (NR) the star's chromospheric emission levels show a plateau in the emission for Log(NR) < -1.1 indicating chromospheric saturation similar to the coronal saturation seen in previously observed X-ray emission from the same stars. However, unlike the coronal emission, the chromospheric emission of the stars show little evidence of a reduction in emission (i.e. supersaturation) for the ultra-rapid rotators in the clusters. Thus we believe that coronal supersaturation is not the result of an overall decrease in magnetic dynamo efficiency for ultra-rapid rotators.Comment: 19 pages, 14 figures, Landscape tables in separate tex file, Accepted by MNRA

    Non-LTE Model Atmospheres for Late-Type Stars II. Restricted NLTE Calculations for a Solar-Like Atmosphere

    Full text link
    We test our knowledge of the atomic opacity in the solar UV spectrum. Using the atomic data compiled in Paper I from modern, publicly available, databases, we perform calculations that are confronted with space-based observations of the Sun. At wavelengths longer than about 260 nm, LTE modeling can reproduce quite closely the observed fluxes; uncertainties in the atomic line data account fully for the differences between calculated and observed fluxes. At shorter wavelengths, departures from LTE appear to be important, as our LTE and restricted NLTE calculations differ. Analysis of visible-near infrared Na I and O I lines, two species that produce a negligible absorption in the UV, shows that observed departures from LTE for theses species can be reproduced very accurately with restricted (fixed atmospheric structure) NLTE calculations.Comment: 13 pages, 11 figures, to appear in Ap

    Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point

    Get PDF
    The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered
    corecore