754 research outputs found

    Tailoring electronic and optical properties of TiO2: nanostructuring, doping and molecular-oxide interactions

    Get PDF
    Titanium dioxide is one of the most widely investigated oxides. This is due to its broad range of applications, from catalysis to photocatalysis to photovoltaics. Despite this large interest, many of its bulk properties have been sparsely investigated using either experimental techniques or ab initio theory. Further, some of TiO2's most important properties, such as its electronic band gap, the localized character of excitons, and the localized nature of states induced by oxygen vacancies, are still under debate. We present a unified description of the properties of rutile and anatase phases, obtained from ab initio state of the art methods, ranging from density functional theory (DFT) to many body perturbation theory (MBPT) derived techniques. In so doing, we show how advanced computational techniques can be used to quantitatively describe the structural, electronic, and optical properties of TiO2 nanostructures, an area of fundamental importance in applied research. Indeed, we address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by showing how to combine nanostructural changes with doping. With this aim we compare TiO2's electronic properties for 0D clusters, 1D nanorods, 2D layers, and 3D bulks using different approximations within DFT and MBPT calculations. While quantum confinement effects lead to a widening of the energy gap, it has been shown that substitutional doping with boron or nitrogen gives rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Finally, we report how ab initio methods can be applied to understand the important role of TiO2 as electron-acceptor in dye-sensitized solar cells. This task is made more difficult by the hybrid organic-oxide structure of the involved systems.Comment: 32 pages, 8 figure

    Syzygies of torsion bundles and the geometry of the level l modular variety over M_g

    Full text link
    We formulate, and in some cases prove, three statements concerning the purity or, more generally the naturality of the resolution of various rings one can attach to a generic curve of genus g and a torsion point of order l in its Jacobian. These statements can be viewed an analogues of Green's Conjecture and we verify them computationally for bounded genus. We then compute the cohomology class of the corresponding non-vanishing locus in the moduli space R_{g,l} of twisted level l curves of genus g and use this to derive results about the birational geometry of R_{g, l}. For instance, we prove that R_{g,3} is a variety of general type when g>11 and the Kodaira dimension of R_{11,3} is greater than or equal to 19. In the last section we explain probabilistically the unexpected failure of the Prym-Green conjecture in genus 8 and level 2.Comment: 35 pages, appeared in Invent Math. We correct an inaccuracy in the statement of Prop 2.

    A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks

    Get PDF
    The growing diffusion of electric vehicles connected to distribution networks for charging purposes is an ongoing problem that utilities must deal with. Direct current networks and storage devices have emerged as a feasible means of satisfying the expected increases in the numbers of vehicles while preserving the effective operation of the network. In this paper, an innovative probabilistic methodology is proposed for the optimal sizing of electrical storage devices with the aim of maximizing the penetration of plug-in electric vehicles while preserving efficient and effective operation of the network. The proposed methodology is based on an analytical solution of the problem concerning the power losses minimization in distribution networks equipped with storage devices. The closed-form expression that was obtained is included in a Monte Carlo simulation procedure aimed at handling the uncertainties in loads and renewable generation units. The results of several numerical applications are reported and discussed to demonstrate the validity of the proposed solution. Also, different penetration levels of generation units were analyzed in order to focus on the importance of renewable generation

    An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols

    Get PDF
    Studies of stratospheric solar geoengineering have tended to focus on modification of the sulfuric acid aerosol layer, and almost all climate model experiments that mechanistically increase the sulfuric acid aerosol burden assume injection of SO2. A key finding from these model studies is that the radiative forcing would increase sublinearly with increasing SO2 injection because most of the added sulfur increases the mass of existing particles, resulting in shorter aerosol residence times and aerosols that are above the optimal size for scattering. Injection of SO3 or H2SO4 from an aircraft in stratospheric flight is expected to produce particles predominantly in the accumulation-mode size range following microphysical processing within an expanding plume, and such injection may result in a smaller average stratospheric particle size, allowing a given injection of sulfur to produce more radiative forcing. We report the first multi-model intercomparison to evaluate this approach, which we label AM-H2SO4 injection. A coordinated multi-model experiment designed to represent this SO3- or H2SO4-driven geoengineering scenario was carried out with three interactive stratospheric aerosol microphysics models: the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM2) with the Whole Atmosphere Community Climate Model (WACCM) atmospheric configuration, the Max-Planck Institute's middle atmosphere version of ECHAM5 with the HAM microphysical module (MAECHAM5-HAM) and ETH's SOlar Climate Ozone Links with AER microphysics (SOCOL-AER) coordinated as a test-bed experiment within the Geoengineering Model Intercomparison Project (GeoMIP). The intercomparison explores how the injection of new accumulation-mode particles changes the large-scale particle size distribution and thus the overall radiative and dynamical response to stratospheric sulfur injection. Each model used the same injection scenarios testing AM-H2SO4 and SO2 injections at 5 and 25 Tg(S) yr-1 to test linearity and climate response sensitivity. All three models find that AM-H2SO4 injection increases the radiative efficacy, defined as the radiative forcing per unit of sulfur injected, relative to SO2 injection. Increased radiative efficacy means that when compared to the use of SO2 to produce the same radiative forcing, AM-H2SO4 emissions would reduce side effects of sulfuric acid aerosol geoengineering that are proportional to mass burden. The model studies were carried out with two different idealized geographical distributions of injection mass representing deployment scenarios with different objectives, one designed to force mainly the midlatitudes by injecting into two grid points at 30° N and 30° S, and the other designed to maximize aerosol residence time by injecting uniformly in the region between 30° S and 30° N. Analysis of aerosol size distributions in the perturbed stratosphere of the models shows that particle sizes evolve differently in response to concentrated versus dispersed injections depending on the form of the injected sulfur (SO2 gas or AM-H2SO4 particulate) and suggests that prior model results for concentrated injection of SO2 may be strongly dependent on model resolution. Differences among models arise from differences in aerosol formulation and differences in model dynamics, factors whose interplay cannot be easily untangled by this intercomparison. Copyright © 2022 Debra K. Weisenstein et al

    Effective targeting of DC-sign by α-fucosylamide functionalized gold nanoparticles

    Get PDF
    Dendritic Cells (DCs), the most potent antigenpresenting cells, play a critical role in the detection of invading pathogens, which are recognized also by multiple carbohydrate-specific receptors. Among them, DC-SIGN is one of the best characterized, with high-mannose and Lewis-type glycan specificity. In this study, we present a potent DC-SIGN targeting device developed using gold nanoparticles functionalized with \u3b1-fucosyl-\u3b2-alanyl amide. The nanoparticles bound to cellular DC-SIGN and induced internalization as effectively as similar particles coated with comparable amounts of LewisX oligosaccharide. They were found to be neutral toward dendritic cell maturation and IL-10 production, thus envisaging a possible use as targeted imaging tools and antigen delivery devices

    rAAV2/5 Gene-Targeting to Rods: Dose-Dependent Efficiency and Complications Associated With Different Promoters

    Get PDF
    A prerequisite for using corrective gene therapy to treat humans with inherited retinal degenerative diseases that primarily affect rods is to develop viral vectors that target specifically this population of photoreceptors. The delivery of a viral vector with photoreceptor tropism coupled with a rod-specific promoter is likely to be the safest and most efficient approach to target expression of the therapeutic gene to rods. Three promoters that included a fragment of the proximal mouse opsin promoter (mOP), the human G-protein-coupled receptor protein kinase 1 promoter (hGRK1), or the cytomegalovirus immediate early enhancer combined with the chicken ÎČ actin proximal promoter CBA were evaluated for their specificity and robustness in driving GFP reporter gene expression in rods, when packaged in a recombinant adeno-associated viral vector of serotype 2/5 (AAV2/5), and delivered via subretinal injection to the normal canine retina. Photoreceptor-specific promoters (mOP, hGRK1) targeted robust GFP expression to rods, whereas the ubiquitously expressed CBA promoter led to transgene expression in the retinal pigment epithelium, rods, cones and rare MĂŒller, horizontal and ganglion cells. Late onset inflammation was frequently observed both clinically and histologically with all three constructs when the highest viral titers were injected. Cone loss in the injected regions of the retinas that received the highest titers occurred with both the hGRK1 and CBA promoters. Efficient and specific rod transduction, together with preservation of retinal structure was achieved with both mOP and hGRK1 promoters when viral titers in the order of 1011 vg ml–1 were used

    Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence

    Get PDF
    We show that the Gromov-Witten theory of Calabi-Yau hypersurfaces matches, in genus zero and after an analytic continuation, the quantum singularity theory (FJRW theory) recently introduced by Fan, Jarvis and Ruan following ideas of Witten. Moreover, on both sides, we highlight two remarkable integral local systems arising from the common formalism of Gamma-integral structures applied to the derived category of the hypersurface {W=0} and to the category of graded matrix factorizations of W. In this setup, we prove that the analytic continuation matches Orlov equivalence between the two above categories.Comment: 72pages, v2: Appendix B and references added. Typos corrected, v3: several mistakes corrected, final versio

    Recombinant AAV-Mediated \u3cem\u3eBEST1\u3c/em\u3e Transfer to the Retinal Pigment Epithelium: Analysis of Serotype-Dependent Retinal Effects

    Get PDF
    Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of retinal disorders commonly referred to as bestrophinopathies and usually diagnosed in early childhood or adolescence. The disease primarily affects macular and paramacular regions of the eye leading to major declines in central vision later in life. Currently, there is no cure or surgical management for BEST1-associated disorders. The recently characterized human disease counterpart, canine multifocal retinopathy (cmr), recapitulates a full spectrum of clinical and molecular features observed in human bestrophinopathies and offers a valuable model system for development and testing of therapeutic strategies. In this study, the specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2 promoter were assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype was associated with cone damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector serotype carrying either GFP reporter or BEST1 transgene under control of human VMD2 promoter was safe, and enabled specific transduction of the RPE cell monolayer that was stable for up to 6 months post injection. These encouraging studies with the rAAV2/2 vector lay the groundwork for development of gene augmentation therapy for human bestrophinopathies

    Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice

    Get PDF
    Although mutated G11778A NADH ubiquinone oxidoreductase subunit 4 (ND4) mitochondrial DNA (mtDNA) is firmly linked to the blindness of Leber hereditary optic neuropathy (LHON), a bona fide animal model system with mutated mtDNA complex I subunits that would enable probing the pathogenesis of optic neuropathy and testing potential avenues for therapy has yet to be developed. The mutant human ND4 gene with a guanine to adenine transition at position 11778 with an attached FLAG epitope under control of the mitochondrial heavy strand promoter (HSP) was inserted into a modified self-complementary (sc) adeno-associated virus (AAV) backbone. The HSP-ND4FLAG was directed toward the mitochondria by adding the 23 amino acid cytochrome oxidase subunit 8 (COX8) presequence fused in frame to the N-terminus of green fluorescent protein (GFP) into the AAV2 capsid open reading frame. The packaged scAAV-HSP mutant ND4 was injected into the vitreous cavity of normal mice (OD). Contralateral eyes received scAAV-GFP (OS). Translocation and integration of mutant human ND4 in mouse mitochondria were assessed with PCR, reverse transcription-polymerase chain reaction (RT-PCR), sequencing, immunoblotting, and immunohistochemistry. Visual function was monitored with serial pattern electroretinography (PERG) and in vivo structure with spectral domain optical coherence tomography (OCT). Animals were euthanized at 1 year and processed for light and transmission electron microscopy. The PCR products of the mitochondrial and nuclear DNA extracted from infected retinas and optic nerves gave the expected 500 base pair bands. RT-PCR confirmed transcription of the mutant human ND4 DNA in mice. DNA sequencing confirmed that the PCR and RT-PCR products were mutant human ND4 (OD only). Immunoblotting revealed the expression of mutant ND4FLAG (OD only). Pattern electroretinograms showed a significant decrement in retinal ganglion cell function OD relative to OS at 1 month and 6 months after AAV injections. Spectral domain optical coherence tomography showed optic disc edema starting at 1 month post injection followed by optic nerve head atrophy with marked thinning of the inner retina at 1 year. Histopathology of optic nerve cross sections revealed reductions in the optic nerve diameters of OD versus OS where transmission electron microscopy revealed significant loss of optic nerve axons in mutant ND4 injected eyes where some remaining axons were still in various stages of irreversible degeneration with electron dense aggregation. Electron lucent mitochondria accumulated in swollen axons where fusion of mitochondria was also evident. Due to the UGA codon at amino acid 16, mutant G11778A ND4 was translated only in the mitochondria where its expression led to significant loss of visual function, loss of retinal ganglion cells, and optic nerve degeneration recapitulating the hallmarks of human LHON
    • 

    corecore