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Abstract We analyze Chiodo’s formulas for the Chern classes related to the r -th
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equivalent to the topological recursion for the orbifold Hurwitz numbers. In particular,
this gives a new proof of the topological recursion for the orbifold Hurwitz numbers.
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1 Introduction

1.1 Topological recursion

The topological recursion in the sense of Chekhov, Eynard, andOrantin (see, e.g., [17])
takes as an input a spectral curve (�, x, y, B), i.e., the data of a Riemann surface �,
two functions x and y on � with some compatibility condition, and the choice of a
bi-differential B on the surface (which is canonical in the case � = CP1, so we will
omit it in this case). The recursion produces a collection of symmetric n-differentials
Wg,n (called correlation differentials) defined again on the surface whose expansion
can generate solutions to enumerative geometric problems.

In particular, under some conditions the expansion of Wg,n are related to the cor-
relators of semi-simple cohomological field theories [11].

1.2 Chiodo’s formula

In [21], Mumford derived a formula for the Chern character of the Hodge bun-
dle on the moduli space of curves Mg,n in terms of the tautological classes and
Bernoulli numbers. In [5], Chiodo generalizes Mumford’s formula. The moduli stack
Mg,n is substituted with Mr,s

g;a1,...,an , the proper moduli stack of r th roots of the line
bundle

ω⊗s
log

(
−

n∑
i=1

ai xi

)

where ωlog = ω(
∑

xi ), the integers s, a1, . . . , an satisfy

(2g − 2 + n)s −
∑
i

ai ∈ rZ,

and the xi ’s are the marked points on the curves. Let π : C → Mr
g,n be the universal

curve and denote by S → C the universal r -th root. Chiodo’s formula computes
the Chern character ch(R•π∗S), again in terms of tautological classes and values of
Bernoulli polynomials at rational points with denominator r . The push-forward of the
corresponding Chern class to the moduli space of curves will be called the Chiodo
class.

In one particular case we know a relation between the Chiodo classes and the
topological recursion. Namely, the coefficients of some expansion of the differentials
Wg,n for the spectral curve data (� = CP1, x = log z − zr , y = z) are expressed in
terms of the intersection numbers of the Chiodo classes for s = 1, r = 1, 2, . . . .
The main result of this paper is an extension of this correspondence to arbitrary
s ≥ 0.
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Chiodo formulas for the r -th roots and topological recursion 903

1.3 Chiodo classes and topological recursion

We consider the spectral curve

(� = CP1, x(z) = −zr + log z, y(z) = zs). (1)

We prove that (see Theorem 4.5)
the expansion of the corresponding correlation differentials in some auxiliary basis

of 1-forms is given by the intersection numbers of the corresponding Chiodo class for
these particular r, s ≥ 1.

The case s = 0 is exceptional. In this case, the intersection numbers are the same
as in the case s = r , so we still have to use the spectral curve (� = CP1, x(z) =
−zr + log z, y(z) = zr ).

These spectral curves are known in the literature, in someparticular cases, in relation
to various versions of Hurwitz numbers.

1.4 Hurwitz numbers

Hurwitz numbers play an important role in the interaction of combinatorics, repre-
sentation theory of symmetric groups, integrable systems, tropical geometry, matrix
models, and intersection theory on moduli spaces of curves.

There are several kinds of Hurwitz numbers. Simple Hurwitz numbers enumerate
finite degree d coverings of the 2-sphere by a genus g connected surface, with a fixed
ramification profile (μ1, . . . , μn) over infinity,

∑n
i=1 μi = d while the remaining

2g − 2 + n + d ramifications over fixed points are simple.
These Hurwitz numbers are known to be the coefficients of the expansions of the

correlation forms of the spectral curve (1) for r = s = 1. This was conjectured in [3]
and proved in several different ways, see, e.g., [9,16].

Chiodo’s formula in this case is reduced to the standard Mumford formula, so the
Chiodo class is theChern class of the dualHodge bundle on themoduli space of curves.
The fact that the same correlation differentials are related, in different expansion, to
simpleHurwitz numbers and to the intersection numbers, implies that there is a formula
for simple Hurwitz numbers in terms of the intersection numbers. Indeed, it is the
celebrated ELSV formula [13]. The equivalence between the topological recursion
and the ELSV formula is proved in [15], see also [9,23].

Another example is r -spin Hurwitz numbers. In this case, the definition is a bit
involved; roughly speaking, we still consider the maps of genus g algebraic curves
to CP1, with a fixed profile over infinity, but the remaining simple ramifications are
replaced by more complicated singularities, so-called completed cycles. We refer
to [23,24] for the precise definition.

In this case, the r -spin Hurwitz numbers are conjecturally related by the spectral
curve (1) for that particular r and s = 1, see [20,23]. The same logic as for the simple
Hurwitz numbers implies that this conjecture is equivalent to an ELSV-type formula
that expresses the r -spin Hurwitz numbers in terms of intersection numbers [23]. The
corresponding ELSV-type formula was conjectured in [25] and is still open.
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904 D. Lewanski et al.

1.5 Orbifold Hurwitz numbers

A case of special interest for us is the r -orbifold Hurwitz numbers. They enumerate
finite degree d, r |d, coverings of the 2-sphere by a genus g connected surface, with
a fixed ramification profile (μ1, . . . , μn) over the infinity,

∑n
i=1 μi = d, the fixed

ramification profile (r, r, . . . , r) over zero, while the remaining 2g − 2 + n + d/r
ramifications over fixed points are simple.

It is proved in [2,8] that the r -orbifold Hurwitz numbers satisfy the topological
recursion for the spectral curve (1) with this particular r and s = r . Johnson-
Pandharipande-Tseng [19] exhibited an ELSV-type formula that can be restricted to
express r -orbifold Hurwitz numbers in terms of intersection numbers. As an appli-
cation of the general correspondence between the Chiodo formulas and topological
recursion, we prove the equivalence of these two statements (see Theorem 5.1).

Since the Johnson-Pandharipande-Tseng formula (the JPT formula, for brevity)
is proved independently, our equivalence result implies a proof of the topological
recursion of r -orbifold Hurwitz numbers.

It is a new proof of the topological recursion; the existing proofs [2,8] do use the
JPT formula, but only its combinatorial structure, and not the geometry of the classes.
The topological recursion is then derived in [2,8] from an additional recursion relation
for r -orbifold Hurwitz numbers called cut-and-join equation.

1.6 Further remarks

A natural question is whether we can use the equivalence between the topological
recursion and the JPT formula for r -orbifold Hurwitz numbers to give a new proof of
the JPT formula, as it is done in [9] for the simple Hurwitz numbers. This approach
requires a new proof of the topological recursion that would not use the JPT formula.
This is done in [10], so we refer there for further details.

Another natural question is whether there is any natural combinatorial and/or geo-
metric problem of Hurwitz type related to the other spectral curves (1) for arbitrary r
and s. The only indication of a possible relation that we know is that similar spectral
curves are used in [20] for the so-called mixed Hurwitz numbers in the context of the
quantum spectral curve theory.

1.7 Plan of the paper

In Sect. 2 we review the semi-simple cohomological field theories, possibly with
a non-flat unit, that correspond to Chiodo classes. In Sect. 3 we recall the general
formula of the differentials Wg,n in terms of integrals over moduli spaces of curves
as described in [11,14], while in Sect. 4 we compute explicitly all the ingredients
of that formula and prove our main theorem, Theorem 4.5. Finally, in Sect. 5 we
identify the particular Chiodo class with the one used in the JPT formula and prove
the equivalence of the JPT formula and the topological recursion for r -orbifoldHurwitz
numbers.
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Chiodo formulas for the r -th roots and topological recursion 905

2 Chiodo classes

In this Section, we recall the definition and some simple properties of the Chiodo
classes. These classes are defined on the moduli spaces of tensor r th roots of the line
bundle ω⊗s

log

(−∑
mi xi

)
, but in this paper we will only need their push-forward to the

space of curvesMg,n . A more detailed discussion of the space of r th roots in the case
s = 0 is contained in Sect. 5.2. We also refer the reader to [5–7,23] for all necessary
background and origin of the lemmas in this section.

2.1 Definition

Let r ≥ 1 be an integer and 1 ≤ a1, . . . , an ≤ r , 0 ≤ s be integers satisfying

(2g − 2 + n)s −
n∑

i=1

ai ∈ rZ (2)

Consider the morphisms

C π→ Mr,s
g;a1,...,an

ε→ Mg,n,

whereMr,s
g;a1,...,an is the space of r th roots S⊗r →∼ ω⊗s

log

(−∑
ai xi

)
, C is its universal

curve, and ε is the forgetful morphism to the space of curves.
While the boundary strata of Mg,n are described by stable graphs, those of

Mr,s
g;a1,...,an are described by stable graphs with a remainder mod r assigned to each

half-edge in such a way that the sum of residues on each edge vanishes and that Con-
dition (2) is satisfied for each vertex. The boundary divisors correspond to one-edged
graphs with two opposite remainders mod r assigned the two half-edges.

The Chern characters of the derived push-forward R∗π∗S are given by Chiodo’s
formula [5]

chm(R∗π∗S) = Bm+1(
s
r )

(m + 1)! κm −
n∑

i=1

Bm+1(
ai
r )

(m + 1)! ψm
i

+ r

2

r−1∑
a=0

Bm+1(
a
r )

(m + 1)! ( ja) ∗ (ψ ′)m + (−1)m−1(ψ ′′)m

ψ ′ + ψ ′′ , (3)

where ja is the boundary map corresponding to the boundary divisor with remainder a
at one of the two half-edges and ψ ′, ψ ′′ are the ψ-classes at the two branches of the
node.

We are interested in the Chiodo classes

Cg,n(r, s; a1, . . . , an)
= ε∗c(−R∗π∗S)
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906 D. Lewanski et al.

= ε∗
[
c(R1π∗S)/c(R0π∗S)

]

= ε∗ exp
( ∞∑
m=1

(−1)m(m − 1)!chm(R∗π∗S)

)
∈ H even(Mg,n). (4)

An explicit expression of the classes Cg,n(r, s; a1, . . . , an) in terms of stable graphs,
obtained by expanding the exponential in the expression above, is given in [18], Corol-
lary 4.

Consider Cg,n(r, s; a1, . . . , an) as a coefficient of a map

Cg,n(r, s) : V⊗n → H even(Mg,n), (5)

where V = 〈v1, . . . , vr 〉, and

Cg,n(r, s) : va1 ⊗ · · · ⊗ van 
→ Cg,n(r, s; a1, . . . , an). (6)

2.2 Cohomological field theories

Lemma 2.1 For 0 ≤ s ≤ r the classes {Cg,n(r, s)} form a semi-simple cohomological
field theory.

A semi-simple cohomological field theory (CohFT) is obtained via the action of
an element of the upper-triangular Givental group on a topological field theory. To
determine a topological field theory {ωg,n}, we have to fix its scalar product η and
ω0,3. An element of the upper-triangular Givental group is determined by a matrix
R(ζ ) ∈ End(V )[[ζ ]] that should satisfy the symplectic conditions with respect to η.

In the case of {Cg,n(r, s)} we have the following description.

Lemma 2.2 For 0 ≤ s ≤ r the classes {Cg,n(r, s)} are given by Givental’s action of
the R-matrix R(ζ ) on the topological field theory ω with metric η on V , where

V = 〈v1, . . . , vr 〉, (7)

R(ζ ) = exp

( ∞∑
m=1

diagr−1
a=0Bm+1

( a
r

)
m(m + 1)

(−ζ )m

)
, (8)

R−1(ζ ) = exp

(
−

∞∑
m=1

diagr−1
a=0Bm+1

( a
r

)
m(m + 1)

(−ζ )m

)
, (9)

η(va, vb) = 1

r
δa+b mod r , (10)

ω0,3(va ⊗ vb ⊗ vc) = 1

r
δa+b+c−s mod r , (11)

ωg,n(va1 ⊗ · · · ⊗ van ) = r2g−1δa1+···+an−s(2g−2+n) mod r . (12)
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Chiodo formulas for the r -th roots and topological recursion 907

2.3 Cohomological field theories with a non-flat unit

Let us discuss now what happens for s > r . We need an extension of the notion
of cohomological field theory, namely, we have to consider the cohomological field
theories with a non-flat unit, CohFT/1 for brevity.

The CohFT/1s are obtained by an extension of the Givental group by translations,
which allows one to use the dilaton leaves (in the terminology of [11,12]) or κ-legs (in
the terminology of [22]) with arbitrary coefficients. We refer to the exposition in [22]
for further details.

One of the possible descriptions of a CohFT/1 is in terms of stable graphs without
any κ-legs. The vertices, leaves, and edges of these graphs are decorated in exactly
the same way as in the case of a usual CohFT, but in addition every vertex is also
decorated by exp(

∑∞
m=1 Tmκm) for some constants Tm , m = 1, 2, . . . .

In the case of Chiodo classes (4) for s > r , we have the following:

Lemma 2.3 For s > r the classes {Cg,n(r, s)} form a CohFT/1. The corresponding
element of the extendedGivental group coincides with the one described in Lemma 2.2,
but instead of the dilaton shift, we decorate each vertex by

exp

( ∞∑
m=1

(−1)m
Bm+1(

s
r )

m(m + 1)
κm

)
. (13)

3 Topological recursion and Givental group

In this Section, we revisit the main result of [11,14]. We present a version a bit refined
of it, to make precise relation that incorporates a torus action on cohomological field
theories.

3.1 General background

The input of the local topological recursion consists of a local spectral curve
� = �r

i=1Ui , which is a disjoint union of open disks with the center points pi ,
i = 1, . . . , r , holomorphic function x : � → C such that the zeros of its differential
dx are p1, . . . , pr , holomorphic function y : � → C, and a symmetric bidifferential
B defined on � × � with a double pole on the diagonal with residue 1.

The output is a set of symmetric differentialsWg,n on�n . This set of differentials is
canonically associated to the input data via the topological recursion procedure. Under
some conditions (for example, when � is an open submanifold of a Riemann surface,
where dx is a globally defined meromorphic differential, see [14], and we should
assume some relation between y and B, see [11] and below), we can represent this set
of differentials in terms of the correlators of a CohFT multiplied by some auxiliary
differentials. This representation is not canonical, the choice of it is controlled by the
action of the group (C∗)r .

Our goal is to make this action on all ingredients of the formula (that is, the matrix
R of a CohFT, its underlying TFT, and the auxiliary differentials) precise.
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908 D. Lewanski et al.

3.2 The formula

We fix a point (C1, . . . ,Cr ) ∈ (C∗)r . We also fix some additional constant C ∈ C
∗.

All constructions in this Section depend on these choices.
We choose a local coordinate wi on Ui , i = 1, . . . , r , such that wi (pi ) = 0 and

x = (Ciwi )
2 + xi . (14)

In this case, the underlying TFT is given by

η(ei , e j ) = δi j ,

α
Top
g,n (ei1 ⊗ · · · ⊗ ein ) = δi1...in

(
−2C2

i C
dy

dwi
(0)

)−2g+2−n

.
(15)

In particular, the unit vector is equal to
∑r

i=1

(
−2C2

i C
dy
dwi

(0)
)
ei .

The matrix R(ζ ) is given by

− 1

ζ
R−1(ζ )

j
i = 1√

2πζ

∫ ∞

−∞
B(wi , w j )

dwi

∣∣∣∣
wi=0

· e− w2
j

2ζ . (16)

We have to check that the function y satisfies the condition

2C2
i C√
2πζ

∫ ∞

−∞
dy · e− w2

i
2ζ =

r∑
k=1

(R−1)ik

(
2C2

k C
dy

dwk
(0)

)
(17)

Finally, the auxiliary functions ξi : � → C are given by

ξi (x) :=
∫ x B(wi , w)

dwi

∣∣∣∣
wi=0

(18)

Using Formulas (15) and (16) we define a CohFT, whose classes we denote by
αCoh
g,n (ei1 ⊗ · · · ⊗ ein ).

Theorem 3.1 [11,14] The differentials Wg,n produced by the topological recursion
from the input (�, x, y, B) are equal to

Wg,n = C2g−2+n
∑

i1,...,in
d1,...,dn

∫
Mg,n

αCoh
g,n (ei1 ⊗ · · · ⊗ ein )

n∏
j=1

ψ
d j
j d

((
− 1

w j

d

dw j

)d j

ξi j

)
. (19)

In particular, this formula does not depend on the choice of (C1, . . . ,Cr ) ∈ (C∗)r
and C ∈ C

∗, though all its ingredients do.
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Chiodo formulas for the r -th roots and topological recursion 909

The proof of this theorem is given by exactly the same argument as in [11,14], with
a different choice of local coordinates near the points pi , so we omit it here.

Remark 1 Let us discuss what happens if the condition (17) is not satisfied. Still, under
the same conditions a version of Theorem 3.1 holds. Namely, we can represent the
correlation differentials as

Wg,n = C2g−2+n
∑

i1,...,in
d1,...,dn

∫
Mg,n

α
Coh/1
g,n (ei1 ⊗ · · · ⊗ ein )

n∏
j=1

ψ
d j
j d

((
− 1

w j

d

dw j

)d j

ξi j

)
, (20)

where the classes α
Coh/1
g,n are described, in terms of the graphical formalism recalled

in Sect. 2.3, via the same TFT and R-matrix as αCoh
g,n in Theorem 3.1, but instead of the

dilaton leaves, we decorate each vertex labeled by i (that is, the one that is decorated
by α

Top
g,n (ei ⊗ · · · ⊗ ei )) with the κ-class

exp

( ∞∑
k=1

Ti,kκk

)
, (21)

where the constants Ti,k are given by

dy

dwi
(0) exp

( ∞∑
k=1

Ti,k(−ζ )k

)
= 1√

2πζ

∫ ∞

−∞
dy · e− w2

i
2ζ . (22)

This is a direct corollary of [15, Theorem 3.2], see also [11, Lemma 3.5].

4 Computations with the spectral curve

Consider the following initial data on the spectral curve � = CP1 with a global
coordinate z:

x(z) = −zr + log z;
y(z) = zs;
B(z, z′) = dz dz′

(z − z′)2
. (23)

In this section, we compute all ingredients of the Formula (19) for this initial data
with a special choice of the torus point. In particular, for 1 ≤ s ≤ r we prove that
the correlation differentials are controlled by a CohFT, and the corresponding CohFT
coincides with the one given by Chiodo classes (4) considered in the normalized
canonical frame.
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4.1 Local expansions

As it was computed in [23], we can associate with this curve the following local data.
The critical points are

pi := r−1/r Ji , i = 0, . . . , r − 1, (24)

and the critical values of the function x at these points are

xi := x(pi ) = −1

r
+ 2π i

√−1

r
− log r

r
, i = 0, . . . , r − 1. (25)

If we choose a local coordinate wi near the point pi such that wi (pi ) = 0 and
−w2

i /2r + xi = x , i = 0, 1, . . . , r − 1, then there are two possible choices for the
expansion of the function z in wi . We fix it to be

z(wi ) = r−1/r Ji +
(
r−1− 1

r Ji
)

wi + O(w2
i ), (26)

With this choice we also fix the expansion of y = zs , namely,

y(wi ) = r−s/r Jsi +
(
sr−1− s

r Jis
)

wi + O(w2
i ). (27)

Lemma 4.1 We have:

1√
2πζ

∫ ∞

−∞
dy(wi ) · e− w2

i
2ζ ∼

(
sr−1− s

r Jis
)
exp

(
−

∞∑
m=1

Bm+1
( s
r

)
m(m + 1)

(−ζ )m

)
. (28)

Proof This Lemma is analogous to [23, Lemma 4.3]. Indeed, we introduce a new
coordinate t = r zr . In this coordinate we have:

z = t
1
r r− 1

r Ji ; (29)

−xi − zr + log z = 1

r
− t

r
+ log t

r
; (30)

dz = t
1−r
r r−1− 1

r Jidt. (31)

We can then make a change of variables and use the standard asymptotic expansion
of the gamma function, cf. the proof of Lemma 4.3 in [23]:

√−2r√
2πζ

∫
dy · e2r ·

(x−xi )
2ζ = sr− 1

2− s
r Jsi e

1
ζ

√−πζ

∫
dt · t s−r

r + 1
ζ e− t

ζ

∼
(
s
√−2r− 1

2− s
r Jsi

)
exp

(
−

∞∑
m=1

Bm+1
( s
r

)
m(m + 1)

(−ζ )m

)
. (32)

��

123



Chiodo formulas for the r -th roots and topological recursion 911

Lemma 4.2 We have:

1√
2πζ

∫ ∞

−∞
B(wi , w j )

dwi

∣∣∣∣
wi=0

· e− w2
j

2ζ

∼
r−1∑
c=0

Jcj−ci

r

exp
(
−∑∞

m=1
Bm+1( c

r )
m(m+1) (−ζ )m

)
(−ζ )

. (33)

Proof This Lemma is just a refined version of Lemma 4.4 in [23], so the proof is
exactly the same as there. ��

Note that this Lemma means that we have to consider the Givental group action
defined by the matrix R(ζ ), where

R−1(ζ )
j
i :=

r−1∑
c=0

Jcj−ci

r
exp

(
−

∞∑
m=1

Bm+1
( c
r

)
m(m + 1)

(−ζ )m

)
. (34)

Wechoose the constantsC1 = · · · = Cr := 1/
√−2r andC := r1+s/r/s. In particular,

with this choice the structure constants of the underlying TFT are given by

− 2C2
i C

dy

dwi
(0) = Jis

r
(35)

Lemma 4.3 For 1 ≤ s ≤ r the condition (17) is satisfied.

Proof This is a direct computation. We have:

2C2
i C√
2πζ

∫ ∞

−∞
dy · e− w2

i
2ζ = − Jis

r
exp

(
−

∞∑
m=1

Bm+1
( s
r

)
m(m + 1)

(−ζ )m

)

=
r∑

k=1

r−1∑
c=0

Jci−ck

r
exp

(
−

∞∑
m=1

Bm+1
( c
r

)
m(m + 1)

(−ζ )m

) (
− Jks

r

)

=
r∑

k=1

(R−1)ik

(
2C2

k C
dy

dwk
(0)

)
(36)

The second equality is true for 0 ≤ s ≤ r − 1, and also for s = r , since Bm+1(1) =
Bm+1(0) for m ≥ 1. ��

This Lemma implies thatwe indeed have correlators of a cohomological field theory
inside Formula (19) in this case.

Finally, Definition (18) implies that

ξi = r−1− 1
r Ji

r− 1
r Ji − z

, (37)
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912 D. Lewanski et al.

and it is easy to see that

− 1

w

d

dw
= 1

r

d

dx
. (38)

This completes the description of all the ingredient of the Formula (19) for the corre-
lation differentials Wg,n .

4.2 Correlation differentials in flat basis

In the previous section, we described all ingredients of the formula for the correlation
differentials (19) for the case of the spectral curve data (23). In particular, for 1 ≤ s ≤ r
we proved that there are the correlators of a CohFT inside this formula, otherwise we
have aCohFT/1.Our goal now is to show that the cohomological field theories obtained
in the previous Section is the one given by the same formulas as in Lemmas 2.2 and 2.3.
To do that we apply a linear change of variables to the basis e0, . . . , er−1 used in the
previous Section.

We use the change of basis from e0, . . . , er−1 to v1, . . . , vr given by the formula

ei =
r∑

a=1

J−aiva; va =
r−1∑
i=0

Jai

r
ei (39)

Lemma 4.4 In the basis v1, . . . , vr we have:

• The underlying TFT α
Top
g,n (15) with the choice of constants given by Eq. (35) is

given by

η(va, vb) = 1

r
δa+b mod r ;

ω0,3(va ⊗ vb ⊗ vc) = 1

r
δa+b+c−s mod r (40)

ωg,n(va1 ⊗ · · · ⊗ van ) = r2g−1δa1+···+an−s(2g−2+n) mod r

• The R-matrix is given by

R(ζ ) = exp

( ∞∑
m=1

diagra=1Bm+1
( a
r

)
m(m + 1)

(−ζ )m

)
(41)

• The auxiliary functions ξa are given by

ξa = r
r−a
r

∞∑
p=0

(pr + r − a)p

p! e(pr+r−a)x . (42)
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Proof The computation of the underlying TFT is fairly simple:

η(va, vb) =
r−1∑
i, j=0

Jai+bj

r2
η(ei , e j ) =

r−1∑
i=0

J(a+b)i

r2
= 1

r
δa+b mod r ,

ω0,3(va ⊗ vb ⊗ vc) =
r−1∑
i=0

Jai+bi+ci

r3
ω0,3(ei ⊗ ei ⊗ ei )

=
r−1∑
i=0

Jai+bi+ci−si

r2
= 1

r
δa+b+c−s mod r , (43)

and the other correlators of the underlying TFT are determined uniquely.
The change of basis for the matrix R−1 reads:

R−1(ζ )ba =
r−1∑
i, j=0

J− jb+ia

r

r−1∑
c=0

Jcj−ci

r
exp

(
−

∞∑
m=1

Bm+1
( c
r

)
m(m + 1)

(−ζ )m

)

= exp

(
−

∞∑
m=1

Bm+1
( c
r

)
m(m + 1)

(−ζ )m

)
· δc−b mod r · δc−a mod r

= exp

(
−

∞∑
m=1

Bm+1
( a
r

)
m(m + 1)

(−ζ )m

)
· δa−b, (44)

which implies Eq. (41).
Finally, Eq. (42) follows from Lemma 4.6 in [23]. ��

Remark 2 Observe that Eqs. (40) and (41) and Lemma 4.3 imply that for s ≤ r the
cohomological field theory that we have in the flat basis coincides with the one given
in Lemma 2.2. For s > r , where Lemma 4.3 does not apply, we have obtained the
topological field theory and the R-matrix as in Lemma 2.3, but we still have to compare
the power series that determines the κ-legs.

Lemma 4.4 allows us to rewrite formula (19) for the correlation differentials of the
spectral curve data (23) in the following way.

Theorem 4.5 The correlation differentials of the spectral curve (23) are equal to

Wg,n =
∞∑

μ1,...,μn=1

d1 ⊗ · · · ⊗ dn e
∑n

j=1 μ j x j

×
∫
Mg,n

Cg,n
(
r, s; r − r〈μ1

r 〉, . . . , r − r〈μn
r

〉
)∏n

j=1(1 − μi
r ψi )

×
n∏
j=1

(μ j
r

)� μ j
r �

�μ j
r �! × r2g−2+n+ (2g−2+n)s+∑n

j=1 μ j
r

s2g−2+n
, (45)
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914 D. Lewanski et al.

where μ
r = �μ

r � + 〈μ
r 〉 is the decomposition into the integer and the fractional parts.

Proof First, consider the case s ≤ r . Using Eq. (19), together with Lemma 4.4,
Remark 2, Eq. (38) and C = r1+s/r/s, we have:

Wg,n(x1, . . . , xn)

=
∑

d1,...,dn≥0
1≤a1,...,an≤r

r2g−2+n+ (2g−2+n)s
r

s2g−2+n

∫
Mg,n

Cg,n(r, s; a1, . . . , an)

×
n∏
j=1

ψ
d j
j r−d j r

r−a j
r d

⎡
⎣(

d

dx j

)d j ∞∑
p=0

(pr + r − a j )
p

p! e(pr+r−a j )x j

⎤
⎦

= d1 ⊗ · · · ⊗ dn
∑

d1,...,dn≥0
1≤a1,...,an≤r

∫
Mg,n

Cg,n(r, s; a1, . . . , an)
n∏
j=1

ψ
d j
j

× r2g−2+2n−∑n
j=1 d j+

(2g−2+n)s−∑n
j=1 a j

r

s2g−2+n

×
n∏
j=1

∞∑
p=0

(pr + r − a j )
p+d j

p! e(pr+r−a j )x j . (46)

Equation (45) is just a way to rewrite the last formula using a summation over the
parameter μi = pir + r − ai instead of a double summation over pi and ai .

In the case s > r ,we should compute separately theκ-classes. In this case,Remark1
and Eq. (28) imply that the κ-class attached to the vertex of index i (in the basis

e0, . . . , er−1) is equal to exp
(∑∞

m=1(−1)m
Bm+1(

s
r )

m(m+1) κm

)
. Since it does not depend

on i , it remains the same in the basis v1, . . . , vr , where it coincides with the one given
by Lemma 2.3. ��

Remark 3 Note that in the case s = 1 we reproduce Theorem 1.7 in [23].

5 Johnson-Pandharipande-Tseng formula and topological recursion

In this Section, we consider a special case of the correspondence between the Chiodo
formulas and the spectral curve topological recursion. We assume that s = r . In this
case, the correlation differentials of this spectral curve are known to give the so-called
r -orbifold Hurwitz numbers in some expansion.

An r -orbifold Hurwitz number hg; �μ is just a double Hurwitz number that enumer-
ates ramified coverings of the sphere by a genus g surface, where one special fiber
is arbitrary (given by the partition �μ of length n) and one has ramification indices
(r, r, . . . , r). Therefore, the degree of the covering

∑n
i=1 μi is divisible by r and there

are b = 2g − 2 + n + ∑n
i=1 μi/r simple critical points.
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The r -orbifold Hurwitz numbers are also known to satisfy the Johnson-
Pandharipande-Tseng (JPT) formula that expresses them in terms of the intersection
theory of the moduli space of curves. The main goal of this Section is to show that the
JPT formula is equivalent to the topological recursion for r -orbifold Hurwitz numbers.
In particular, this gives a new proof of the topological recursion for r -orbifold Hurwitz
numbers.

5.1 The JPT formula

The formula of Johnson, Pandharipande and Tseng is presented in [19] for a general
abelian group G, its particular finite representationU and a vector of monodromies γ .
Here, we consider only the case of G = Z/rZ, the representation U sends 1 ∈ Z/rZ

to e
2π i
r , and γ is empty. In this case the JPT formula reads

hg; �μ
b! = r1−g+∑〈 μi

r 〉
n∏

i=1

μ
� μi

r �
i

�μi
r �!

∫
Mg,n

ε∗
∑

i≥0(−r)iλi∏n
j=1(1 − μ jψ j )

, (47)

where the class ε∗
∑

i≥0(−r)iλi is described in detail below.

5.2 Two descriptions of rth roots

Let G = Z/rZ be the abelian group of r th roots of unity. The spaceMg;a1,...,an (BG)

is the space of stable maps to the stack BG with monodromies ai ∈ {0, . . . , r − 1}
at the marked points. This space, and the natural cohomology classes on it, can be
constructed in several ways, see, for instance, [1,4]. Johnson, Pandharipande, and
Tseng [19] use the description via admissible covers. Chiodo [5] uses the moduli
space of r th roots of the line bundle O(−∑

ai xi ). In our work we apply Chiodo’s
formulas to a result of Johnson, Pandharipande, and Tseng, so we recall and briefly
explain the equivalence between the two approaches.

5.2.1 The r-stable curves.

An r-stable curve is an orbifold stable curve whose only nontrivial orbifold structure
appears at the nodes and at themarkings. The neighborhood of amarking is isomorphic
to �/G, where an r th root of unity ρ ∈ G acts on the disc � by z 
→ ρz. The
neighborhood of a node in a family of r -stable curves is isomorphic to (� × �)/G,
where ρ ∈ G acts by (z, w) 
→ (ρz, ρ−1w).

The moduli space of r -stable curves has the same coarse space as Mg,n , but an
extra factor of G appears in the stabilizer for every node of the curve.

5.2.2 Line bundles over r-stable curves.

A line bundle L over an r -stable curve has a particular structure at the neighborhoods of
markings and nodes. At a marking it can be given by the chart�×Cwith the action of
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916 D. Lewanski et al.

an element ρ ∈ G given by (z, s) 
→ (ρz, ρas). Thus, the number a ∈ {0, . . . , r − 1}
describes the local structure of L at amarking. At a node L can be given by a chart (�×
�) × C with the action of an element ρ ∈ G given by (z, w, s) 
→ (ρz, ρ−1w, ρas).
Note, however, that the number a is replaced with −a (mod r) if we exchange z
and w. Thus the local structure of L at node is described by assigning to the branches
of the node two numbers a′, a′′ ∈ {0, . . . , r − 1} such that a′ + a′′ = 0 mod r .

5.2.3 Roots of O.

In [5] an element ofMg;a1,...,an (BG) is an r -stable curve C with an orbifold line bun-

dle L → C endowedwith an identification L⊗r →∼ O. The integers ai ∈ {0, . . . , r−1}
prescribe the structure of L at the markings.

5.2.4 From rth roots to G-bundles.

To make the connection with the description of Mg;a1,...,an (BG) in [19] we look at
the multi-section of L that maps to the section 1 of O when raised to the power r .
This multi-section is a principal G-bundle π : D → C ramified over the markings
and the nodes. At a marking with label a the G-bundle has the monodromy given
by adding a in Z/rZ. This can be seen from the G-action (z, s) 
→ (ρz, ρas). If we
choose ρ = e2π i/r , a path from z to ρz in the chart corresponds to a loop around the
marking in the stable curve and its lifting leads from s to ρas in the fiber of L .

Similarly, at the node theG-bundle has monodromies a′ and a′′ at the two branches,
satisfying a′ + a′′ = 0 mod r .

Note that, because D is formed by a multi-section of L , the pull-back of L to D
has a tautological section. We will denote this section by φ0.

5.2.5 From G-bundles to rth roots.

In [19] an element of Mg;a1,...,an (BG) is G-cover π : D → C ramified over the
markings and the nodes and satisfying the “kissing condition”: the monodromies
of the G-action over two branches of a node are opposite modulo r . The integers
ai ∈ {0, . . . , r −1} prescribe the monodromies at the markings. Suppose we are given
a principal G-bundle π : D → C like that. Using this data it is easy to construct a line
bundle L over the r -stable curve C corresponding to C . Over any contractible open set
U ⊂ C that does not contain markings and nodes we create a chartU ×C and identify
the r -roots of unity in C with the sheets of the G-bundle in an arbitrary way that
preserves the G-action. At the markings we create the orbi-chart�×C endowed with
the G-action (z, s) 
→ (ρz, ρas) as above and also identify the r -th roots of unity with
the sheets of the bundle. The transition maps between the charts are obtained from the
matching of the sheets over different charts (every transition map is the multiplication
by a locally constant r -th root of unity).
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5.2.6 Sections of L and of K ⊗ L∗.

Let φ be a section of L over an open set U ⊂ C. Then π∗φ/φ0 is a holomorphic
function on π−1(U ) ⊂ D. Moreover, the G-action on this function has the form
f (ρz) = ρ−1 f (z). A global section of L gives rise to a global holomorphic function
on D satisfying the above transformation rule. It follows that L has no global sections
over C, with the exception of the case where all ai ’s vanish, L is the trivial line bundle
and D = C × G.

Similarly, let φ be a section of K ⊗ L∗ on an open set U ⊂ C. Then α = π∗φ · φ0
is a section of the canonical line bundle KD over π−1(U ). Moreover, the G-action on
this function has the form α(ρz) = ρα(z). In particular, the space of global sections
of K ⊗ L∗ coincides with the space of holomorphic differentials on D satisfying the
transformation rule α(ρz) = ρα(z).

5.2.7 Two ways of writing R∗ p∗L.

Chiodo’s formula expresses the Chern character of R∗ p∗L , where p : Cg;a1,...,an (BG)

→ Mg;a1,...,an (BG) is the universal curve. Using this formula one can also easily
express the total Chern class of −R∗ p∗L .

According to our remarks above, if there is at least one positive ai then R0 p∗L = 0.
In that case R1 p∗L is a vector bundle, and we have c(−R∗ p∗L) = c(R1 p∗L).

If all the ai ’s vanish, the spaceMg;a1,...,an (BG) has a special connected component
on which the line bundle L is trivial. Over this component R0 p∗L = C. On the other
connected components we have, as before, R0 p∗L = 0. Therefore, the total Chern
class of R0 p∗L is equal to 1 and we have, once again, c(−R∗ p∗L) = c(R1 p∗L).

Johnson, Pandharipande, and Tseng use the Chern classes λi of the vector bundle
of equivariant sections of KD . Our analysis above shows that this vector bundle is the
dual of R1 p∗L . In other words, we have

c(−R∗ p∗L) =
∑

(−1)iλi , (48)

which is the equality that we use in our computations.

Remark 4 In the Johnson-Pandharipande-Tseng formula the monodromies at the
markings are given by the remainders modulo r of −μi , that is, minus the parts of
the ramification profile. Thus, if we denote by ai = μi mod r , we will use Chiodo’s
formula with remainders r − a1, . . . , r − an at the markings. If an ai is equal to 0, we
can plug either 0 or r in Chiodo’s formula. Indeed, we have Bk(0) = Bk(1) for any
k > 1, thus replacing 0 by r will only affect the Chern character of degree 0, that is
not used in the expression for the total Chern class.

In particular, in Eq. (47) we use the push-forward of
∑

(−1)iλi to Mg,n , for
monodromies equal to minus the remainders of μ1, . . . , μn . This class coincides with
Cg,n(r, s; r − a1, . . . , r − an) defined by Eq. (4).
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5.3 The equivalence

Now we are armed to prove the following

Theorem 5.1 The expansion of the correlation differentials of the spectral curve (23)
for s = r is given by

Wg,n =
∞∑

μ1,...,μn=1

d1 ⊗ · · · ⊗ dn e
∑n

j=1 μ j x j hg; �μ
b! , (49)

if andonly if the numbers hg; �μ are given by the Johnson-Pandharipande-Tseng formula
(47).

Proof The proof is indeed very simple. First, Eq. (48) allows us to replace Chiodo
class in (45) with the push-forward of the linear combination of λ-classes. Then we
notice the following rescaling of the integral

∫
Mg,n

π∗
∑

i≥0(−r)iλi∏n
j=1(1 − μiψi )

= r3g−3+n
∫
Mg,n

π∗
∑

i≥0(−1)iλi∏n
j=1(1 − μi

r ψi )
. (50)

The equivalence then follows from comparison of coefficients in front of particular
d1 ⊗ · · · ⊗ dn e

∑n
j=1 μ j x j in (49) and (45), which is obvious, modulo the following

simple computation of the powers of r . For s = r ,

n∏
j=1

(μ j
r

)� μ j
r �

�μ j
r �!

r2g−2+n+ (2g−2+n)s+∑n
j=1 μ j

r

s2g−2+n
=

n∏
j=1

μ
� μ j

r �
j

�μ j
r �! r

2g−2+n+∑n
j=1〈 μi

r 〉

is the coefficient in Eq. (45). This is equal to

r3g−3+nr1−g+∑〈 μi
r 〉

n∏
i=1

μ
� μi

r �
i

�μi
r �! ,

which is the coefficient of (47) after rescaling (50). ��
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