
 
 

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not 
copy or disclose without written permission. If you have received this item in error, notify the sender and 
delete all copies. 

 

 
 

Effective targeting of DC-SIGN by α-fucosylamide 

functionalized gold nanoparticlesα 
 
 

Journal: Bioconjugate Chemistry 

Manuscript ID: bc-2014-00467u 

Manuscript Type: Article 

Date Submitted by the Author: 13-Oct-2014 

Complete List of Authors: Arosio, Daniela; Consiglio Nazionale delle Ricerche (CNR), Istituto di 
Scienze e Teconogie Molecolari (ISTM) 
Chiodo, Fabrizio; Leiden University Medical Center, Department of 
Parasitology 
Reina, José; Università degli Studi di Milano, Dipartimento di Chimica 
Marelli, Marcello; Consiglio Nazionale delle Ricerche (CNR), Istituto di 
Scienze e Teconogie Molecolari (ISTM) 
Penadés, Soledad; CIC biomaGUNE, Laboratory of Glyconanotechnology 
van Kooyk, Yvette; VU University Medical Center, Department of Molecular 
Cell Biology & Immunology 
Garcia-Vallejo, Juan; VUmc, Molecular Cell Biology & Immunology 
Bernardi, Anna; Universita' di Milano, Chimica Organica e Industriale 

  

 

 

ACS Paragon Plus Environment

Bioconjugate Chemistry
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187932944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

Effective targeting of DC-SIGN by αααα-fucosylamide functionalized gold 

nanoparticles.  

Daniela Arosio, *
,†
 Fabrizio Chiodo,*

,‡,§,⊥
 José J. Reina,

#
 Marcello Marelli,

†
 Soledad Penades,

‡,¥
 Yvette 

van Kooyk,
§
 Juan J. Garcia-Vallejo,

§
 and Anna Bernardi

#,†
 

 
† CNR-Institute of Molecular Science and Technologies (ISTM), via Golgi 19, I-20133 Milan, Italy.  
‡ CIC biomaGUNE, Biofunctional Nanomaterials Unit, Laboratory of GlycoNanotechnology, Paseo 

Miramón 182, 20009 San Sebastián, Spain.  
§ VU University Medical Center, Department of Molecular Cell Biology & Immunology, van der 

Boechorststraat 7, 1081BT Amsterdam, The Netherlands. 
# Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy. 
¥

 CIBER-BBN, Paseo Miramón 182, 20009 San Sebastián, Spain.  

 

 

 

 

 

 

 

Page 1 of 19

ACS Paragon Plus Environment

Bioconjugate Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 2 

Abstract: 

Dendritic Cells (DCs), the most potent antigen-presenting cells, play a critical role in the detection 

of invading pathogens, which are recognized also by multiple carbohydrate-specific receptors. 

Among them, DC-SIGN is one of the best characterized, with high-mannose and Lewis-type glycan 

specifity. In this study, we present a potent DC-SIGN targeting device developed using gold 

nanoparticles functionalized with α-fucosyl-β-alanyl amide. The nanoparticles bound to cellular 

DC-SIGN and induced internalization as effectively as similar particles coated with comparable 

amounts of LewisX oligosaccharide. They were found to be neutral towards dendritic cell 

maturation and IL-10 production, thus envisaging a possible use as targeted imaging tools and 

antigen delivery devices. 

 

 

 

 

 

 

Introduction 

Dendritic cells (DCs) are the most potent antigen-presenting cells and are responsible for the 

detection of pathogens.1 DCs are equipped with multiple carbohydrate-specific receptors, called 

lectins, that recognize a vast array of glycan determinants on both pathogens and host 

glycoproteins.2 Ligand recognition often results in internalization and routing to the endo-lysosomal 

pathway for processing and antigen presentation. Some lectins, in addition, are able to trigger 

specific signaling that modulates the maturation and migration of DCs to secondary lymphoid 

organs for proper stimulation of T cells.3 Natural carbohydrate ligands for DC lectins include high-

mannose N-glycans, such as those found on the HIV gp120 envelope-protein, and Lewis-type 

glycans that also can trigger robust immune responses in humans.4-6 Targeting antigens to DCs via 

lectins is a well-known strategy explored in the last 20 years in immunotherapy.7 Carbohydrate 

ligands have been used as vehicle to improve DC uptake avoiding adverse immune reactions that 

may be elicited by monoclonal antibodies.8 DC-SIGN is one of the best characterized DC lectins 

with high-mannose and Lewis-type glycan specifity.9 Targeting DC-SIGN on DCs using 

multivalent carbohydrate-systems is a recent approach that has demonstrated improved uptake, 

processing, and presentation to antigen-specific T-cells.10-13 Additionally, DC-SIGN targeting of 

appropriate imaging reporters may represent a powerful tool to investigate the cellular dynamics of 

the immune response in lymphoid organs and in peripheral tissues.14-15  
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 3 

Our group has recently described the synthesis of a small library of glycomimetic DC-SIGN 

ligands, characterized by the presence of a β-amino acid tether and a fucosylamide anchor.16-17 Most 

of these molecules bind DC-SIGN with an affinity similar to or better than that of the LeX 

trisaccharide (Galβ1-4[Fucα1-3]GlcNAcβ1), one of its natural fucose-containing ligands.4-5 In 

particular, N-α-fucosyl-β-alanylamide 1a (Figure 1), which can be prepared in a single step from 

fucosyl azide, binds to DC-SIGN with almost the same affinity as LeX, that has often been used as a 

DC-SIGN targeting unit in the context of polyvalent constructs.11-13,18  

 

 

HCl
 
NH2

O

ORRO

RO

NH

O
1a  R = H

1b  R = Ac

 

 

Figure 1. N-α-fucosyl-β-alanylamide 1a, the monovalent targeting device.  

 

 

Hence, fucosylamide 1a could clearly represent an inexpensive and effective alternative to the Lex 

trisaccharide to build DC-SIGN targeting-devices. Indeed, some recent studies indicate that even 

simple monosaccharides can lead to selective nanoparticle recognition and uptake by immune 

system cells.19-20 We therefore synthesized gold nanoparticles (AuNPs) functionalized with multiple 

copies of 1a and measured their ability to interact with DC-SIGN on human DCs and to trigger 

cellular responses following interaction. AuNPs represent an accessible platform for multivalent 

presentation. These nanomaterials are relatively easy to synthesize and purify, and their size, shape 

and coating composition can be finely controlled by choosing the appropriate methodology of 

preparation.21-24 Moreover the globular shape of spherical gold nanoparticles allows a defined and 

stable 3D presentation of the binding ligand. Finally, gold nanoparticles are considered 

biocompatible and viable for in vivo applications.25  

Here we show that AuNPs bearing 50% of fucosylamide ligand 1a compete with gp120 on DC-

SIGN expressing cells with a potency comparable to analogous particles functionalized with much 

more complex DC-SIGN binding oligosaccharides, such as LeX. We also show that these particles 

promote DC-SIGN internalization, do not induce DC maturation and do not trigger cytokine 

responses, as demonstrated for some other DC-SIGN ligands.26 Thus, the AuNPs described in this 
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 4 

manuscript can be considered as excellent DC targeting agents and carriers able to deliver antigenic 

cargo to DCs through DC-SIGN. They appear to lack any immune modulatory capacity, which 

makes them suitable for use as a basis for antigen-specific vaccination in autoimmunity or cancer, 

when used with appropriate adjuvants.  

 

 

 

Results and discussion 

The AuNPs were prepared by reduction of tetrachloroauric acid by NaBH4 in the presence of a thiol 

(or a mixture of thiols), using Brust’s method27 as modified by Penadés (Scheme 1).28 The required 

thiols were generated starting from tri-O-acetyl-α-L- fucosyl-β-alanine 1b
29

 that was conjugated to 

commercially available polyethylene glycolic linker 2, where the disulfide bridge masks the 

terminal thiol groups. The divalent linker was activated as a bis N-hydroxysulfosuccinimide ester 

and then treated with 1b in 4:1 phosphate buffer saline (pH 7.3) : CH3CN. The desired bis amide 3 

was recovered after purification in 30% yield. Acetyl groups removal with 4M CH3NH2 in EtOH 

afforded the free glycosyl amido-PEG 4, which was used without further purifications. Direct 

conjugation of the unprotected fucosylamide 1a to the activated linker was also attempted; however 

it was complicated by formation of an undesired side-product, presumably the furanose form of the 

fucose ring. The free thiol function of 4 and/or 2 was unmasked in the presence of AuCl4H by 

NaBH4 reduction of the disulfide bond. The resulting dark suspension of gold nanoparticles was 

shaken for ca. 2 h at room temperatures and the particles were purified by centrifugal filtration 

(Vivaspin filters, 10000 MWCO). Using this protocol, the coating composition of the AuNPs is 

determined by the mixture of thiols used in the reaction. In particular, 15, 30 and 50% mixtures of 

fucosylamide-derivatized linker 4 and unfunctionalized linker 2 were used, to afford AuNPs 5b-d, 

respectively. They were used to investigate the effect of ligand density on AuNP activity. Higher 

concentrations were not considered, assuming that further increasing the density of the sugar would 

not improve receptor binding.30 Control nanoparticles AuNP 5a were also prepared, bearing no 

fucose ligands. All the particles synthesized were water-soluble and could be re-dissolved after 

lyophilization. They were characterized by high-resolution transmission electron microscopy (HR-

TEM) and by 1H-NMR (Figure SI-1-4). The HR-TEM analysis showed uniformly dispersed AuNPs 

characterized by a very small core (ca. 2 nm) and without signs of aggregation. 1H-NMR spectrum 

of fucose functionalized AuNPs, confirmed the presence of the sugar on the surface of the 

nanoparticles and integrations of the proton signals were in agreement with the expected molar ratio 

of coating molecules.  
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AuNPs 5d   50% Fucose-Linker4, 50% Linker2  

 

Scheme 1  Synthesis of the functionalized AuNPs 5a-d 

 

To test whether AuNPs were able to target DC-SIGN, we evaluated the binding of soluble DC-

SIGN through a solid-phase DC-SIGN binding assay.31 Flat-bottomed 96-well plates were coated 

with AuNPs and incubated with a DC-SIGN/Fc chimera for 1 h at 37 ºC. After washing, DC-SIGN 

binding was determined by an ELISA using an antibody against the Fc part of DC-SIGN/Fc. (LeX-

AuNP)32 carrying 10% of Lex were used for comparison. The results (Figure 2a) clearly show 

binding of DC-SIGN to 5d (carrying 50% of fucosylamide) and to the Lex-AuNPs in the presence 

of Ca++ and Mg++. As a control, AuNP 5a, carrying only linker 2, were not recognized by DC-

SIGN. In this experiment, no binding was detected for AuNPs 5b-c, carrying 15% or 30% of 

fucosyl-amide 1a. 

Because DC-SIGN exists as a tetramer on the membrane of DCs and the soluble DC-SIGN/Fc 

chimera is a dimer, AuNPs binding was also tested on cellular DC-SIGN, by measuring binding 

inhibition of fluorescently labelled gp120 beads to a cell line that expresses a mutant form of DC-

SIGN unable to internalize (Figure 2b).33  
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 6 

 

Figure. 2 AuNPs 5d are recognized by DC-SIGN and compete with fluorescently-labelled gp120 

beads. a) ELISA plates were coated with AuNPs (15µg/mL) and their binding to soluble DC-SIGN-

Fc was measured in a solid-phase assay. b) AuNPs (from 12.5 to 100ng/mL) were co-incubated 

with K-SIGNLL/Y cells in presence of fluorescently labelled gp120 beads. The AuNPs ability to bind 

DC-SIGN was measured by FACS as % on inhibition of the gp120 beads-DC-SIGN interaction. 

Data represent the mean + S. D. of a triplicate experiment. These experiments are representative of 

at least three independent experiments. 

 

 

The results (Figure 2b) clearly show that both 5d and LeX-AuNPs (10% LeX loading) inhibit gp120 

binding to DC-SIGN in a dose-dependent manner with an approximate IC50 value around 12 ng/mL. 

Particles 5c and 5b carrying 30 and 15% of fucosyl-amide, respectively, showed a lower but 

significant ability to interact with cellular DC-SIGN. Control AuNPs carrying 100% of linker 2 (5a) 

showed no binding to cellular DC-SIGN. These results establish AuNPs 5d as a potent and effective 

DC-SIGN targeting platform. 

It has previously been demonstrated that several pathogens can trigger different cytokine responses 

through DC-SIGN in a carbohydrate-dependent manner.26 This mechanism depends on a fine 

regulatory balance between C-type lectin receptors (CLRs) and Toll-Like Receptors (TLRs) and has 

sparked the hypothesis that CLRs, and specially DC-SIGN, are immune homeostatic receptors that 

can be hijacked by pathogens to escape immune surveillance. Differences in the DC-SIGN-

dependent signaling responses were described also using multivalent carbohydrate functionalized 

polymers (PAA-LeX and PAA-mannose),26 Leb glycodendrimers,11 dendrimers carrying mannoside 

mimics34 or gp120 high-mannoses,35 indicating that the characterization of the molecular 

determinants involved in DC-SIGN activation still needs further research. To study the downstream 

effects of AuNPs 5 on DC, we analyzed the expression of the DC maturation marker CD86 and of 

the anti-inflammatory cytokine IL-10. CD86 expression was measured by flow cytometry after 

incubating DCs with AuNPs (1 µg/mL) for 16 h. DCs treated with the TLR4 ligand 

lipopolysaccharide (LPS 10ng/mL), a known inducer of DC maturation, were used as a positive 

control. The results clearly show that neither the AuNPs 5, nor the control LeX-AuNPs induced 

CD86 up-regulation at the tested concentration (1 µg/mL) (Figure 3a). DC-SIGN signaling has been 

reported to synergistically enhance IL-10 expression in the context of simultaneous TLR4 

triggering.26 This was investigated by assaying IL-10 production by DCs after simultaneous 

incubation with AuNPs 5 (1 µg/mL) and LPS (10 ng/mL). After 16 h, cells were centrifuged and the 
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 7 

presence of IL-10 in the supernatant was determined by ELISA (Figure 3b). AuNPs 5 were not able 

to enhance LPS mediated IL-10 secretion. On the contrary, a glycopeptide dendrimer carrying Leb 

(LebD3, Figure 3b) used as positive control, induced LPS mediated IL-10 up-regulation as 

previously described.11 Thus, AuNPs 5 seem to behave as pure targeting devices and be unable to 

induce DC maturation or to trigger some of the well-known DC-SIGN mediated signaling-cascades. 

In this context, it may be worth noting that AuNPs displaying ManNAc mono- and di-saccharides19 

or galactofuranose20 have been reported to induce significant activation of antigen presenting cells.  

 

Figure. 3 AuNPs 5 do not induce maturation or IL-10 secretion on DCs. a) Maturation was assessed 

by CD86 expression human DCs after overnight incubation with AuNPs (grey curves) or LPS 

(white curve). None of the AuNPs induced DC maturation or altered the typical maturation profile 

induced by LPS treatment. b) IL-10 secretion (ng/mL) in human DCs after overnight incubation 

with AuNPs (white bars) and AuNPs + LPS (dark bars), as measured by ELISA. LebD3, a Leb 

glycopeptide dendrimer,11 was used as positive control. AuNPs do not show any enhancement in 

LPS-mediated IL-10 secretion. 

 

 

Finally, N-fucosylamide glyco-nanoparticles 5b-5d were able to induce DC-SIGN internalization, 

as measured by imaging flow cytometry (Figure 4). The DC-SIGN binding antibody AZN-D1 was 

used as positive control (Figure 4a); visualization of the internalized protein was achieved using an 

anti-DC-SIGN, CRD-independent, antibody (CSRD).36. Internalization was achieved at 37 °C only 
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 8 

and it was directly proportional to the amount of N-fucosylamide present on the AuNPs (Figure 4b). 

DC-SIGN internalization is one of the first events occurring after carbohydrate-recognition and it is 

related to the ability of this lectin to present antigens to the histocompatibility complexes MHC-I 

and II.33 The ability of AuNPs 5b-d to internalize DC-SIGN on DCs suggests that these 

nanomaterials can be explored for antigen-targeting to DCs. 

 

 

Figure. 4 N-fucosylamide glyconanoparticles 5b-d induce DC-SIGN internalization. a) DC-SIGN 

internalization is induced using the CRD-binding antibody AZN-D1. The localization of DC-SIGN 

is investigated using the CRD-independent antibody CSRD. DC-SIGN internalization is only 

achieved after DCs have been incubated with AZN-D1 at 37 °C. b) Only N-fucosylamide 

nanoparticles 5b-d were able to induce DC-SIGN internalization. Internalization was directly 

proportional to the amount of N-fucosylamide present on the glyconanoparticles. c) Representative 

examples of glycan nanoparticles internalization. No internalization observed with control 5a 

 

Conclusions 

In this work we developed potent and effective DC-SIGN targeting gold nanoparticles based on N-

α-fucosyl-β-alanylamide 1a. The AuNPs 5b-d, characterized by different sugar densities (15%, 

30% and 50% of fucosylamide) and a diameter of ca. 2 nm, were water soluble and well dispersed. 

They were found to bind to DC-SIGN and inhibit gp120 binding to DC-SIGN expressing cells with 

an efficiency comparable to that of similar polyvalent constructs bearing a comparable load (10%) 

of the much more complex oligosaccharide Lex. AuNPs 5b-d induced DC-SIGN internalization, 
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 9 

without triggering DC maturation or the induction of  IL-10. Thus they can be regarded as neutral 

carriers and DC-SIGN targeting devices. Their use as targeted imaging tools and antigen delivery 

devices will be explored in due course. 

 

Experimental procedures 

Chemistry. General: All chemicals and solvents were purchased from Sigma-Aldrich, including 

linker 2. They all were of reagent grade and were used without further purification. Solvents were 

dried by standard procedures and reactions requiring anhydrous conditions were performed under 

Nitrogen atmosphere. N-(β-Alanyl)-2,3,4-tri-O-acetyl-α-L-fucopyranosyl amine 1b was prepared 

according to a reported procedure.29 Mass spectra were obtained with an ESI apparatus Bruker 

Esquire 3000 plus. Thin layer chromatography (TLC) was carried out with pre-coated Merck F254 

silica gel plates. Flash chromatography was carried out using the SP1 Flash Purification System by 

Biotage. 1H and 13C NMR spectra were recorded at 300 K on Bruker AVANCE 400 MHz. 

Chemical shifts δ are expressed in ppm relative to internal Me4Si as standard. For transmission 

electron microscopy (TEM) characterization, a single drop (10 µL) of solution of gold NPs (ca. 0.1 

mg/mL in milliQ water/ethanol) was placed on a holey carbon copper grid (Electron Microscopy 

Science) and left to dry in air overnight. The specimens were analyzed by a LIBRA200 EFTEM 

(ZEISS) with a FEG source and accelerating voltage of 200kV. The average diameter of the AuNPs 

was obtained from evaluation of several TEM micrograph, collected spanning large areas of the 

sample grid, by means of an in-house algorithm for automatic image analysis. 

Synthesis of bis αααα-fucosyl amide conjugated linker 3. The disulfide linker 2 (from Sigma-

Aldrich, 43 mg, 0.047 mmol) and N-hydroxysulfosuccinimide sodium salt (25.5 mg, 0.1175 mmol) 

were dissolved in dry DMF (1.7 mL) and, under nitrogen and at room temperature, dicyclohexyl 

carbodiimide (22 µL, 0.141 mmol) was added. The reaction mixture was stirred for 24 h, and then 

the solvent was removed under reduced pressure. The crude was dissolved in PBS (2.5 mL) and the 

tetra-O-acetyl-α-fucosyl-β-alanine 1b (46 mg, 0.1175 mmol) in CH3CN (0.5 mL) was added. The 

pH was adjusted to 7.3 by adding NaOH 0.2 N and the reaction mixture was stirred for ca. 24 h 

monitoring by TLC (CH3Cl/MeOH 9:1). After reaction completion, the solvent was evaporated 

under reduced pressure and the crude was purified by automated flash chromatography, eluting with 

CHCl3/MeOH (gradient from 95:5 to 80:20). The desired product was collected in 30% yield. 

(white foam). 1H NMR (400 MHz, CDCl3): δ 1.15 (d, 6H, J = 6.1 Hz, CH3 Fuc), 2.0 (s, 6H, 

OCOCH3), 2.03 (s, 6H, OCOCH3), 2.18 (s, 6H, OCOCH3), 2.50 (m, 4H, -NHCOCH2CH2O-), 2.56 

(m, 4H, Fuc-NHCOCH2CH2NH-), 2.88 (t, 4H, -OCH2CH2SH-), 3.55 (m, 4H, Fuc-

NHCOCH2CH2NH-), 3.60-3.70 (m, 56H, -OCH2CH2O-), 3.71-3.78 (m, 8H, -NHCOCH2CH2O-, -
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OCH2CH2SH-), 4.12 (m, 2H, H-5 Fuc), 5.28 (m, 2H, H-4 Fuc), 5.36 (m, 2H, H-2 Fuc), 5.43 (m, 2H, 

H-3 Fuc), 5.93 (m, 2H, H-1 Fuc), 7.32 (m, 2H, Fuc-NHCOCH2CH2NH-), 8.16 (m, 2H, Fuc-

NHCOCH2CH2NH-). 13C NMR (100.6 MHz, CDCl3): δ 173.7, 172.9, 171.4, 170.8, 170.4, 75.1, 

71.6, 71.24, 71.22, 71.16, 71.1, 71.0, 70.9, 70.85, 68.6, 67.8, 67.0, 66.5, 38.9, 37.1, 36.3, 21.4, 21.4, 

17.0. MS (ESI+) m/z: 1599.15 (M+H)+, 800.12 (M+2H)2+.  

Synthesis of 4. The bis α-fucosyl amide conjugated disulfide 3 (22 mg, 0.014 mmol) was dissolved 

in a 4M MeNH2 solution in EtOH (420 µL, 1.68 mmol) and stirred at room temperature for 2h 

monitoring by TLC (CH3Cl/MeOH 9:1). After reaction completion, the solvent was evaporated 

yielding the final product without further purification. 99% yield. (white foam). 1H NMR (400 

MHz, D2O): δ 1.03 (m, 6H, CH3 Fuc), 2.38 (m, 4H, -NHCOCH2CH2O-), 2.44 (m, 4H, Fuc-

NHCOCH2CH2NH-), 2.81 (m, 4H, -OCH2CH2SH-), 3.34 (m, 4H, Fuc-NHCOCH2CH2NH-), 3.45-

3.58 (m, 56H, -OCH2CH2O-), 3.59-3.65 (m, 4H, -NHCOH2CH2O-), 3.66-3.76(m, 10H, H-5 Fuc, H-

4 Fuc, H-3 Fuc -OCH2CH2SH-), 3.86 (m, 2H, H-2 Fuc), 4.69 (m, 2H, H-1 Fuc). 13C NMR (100.6 

MHz, CDCl3): δ 175.9, 174.5, 77.2, 72.0, 70.2, 70.1, 70.0, 69.9, 68.9, 68.1, 67.2, 66.5, 37.8, 36.4, 

36.2, 35.6, 16.2. MS (ESI+) m/z: 1347.7 (M+H)+, 674.6 (M+2H)2+.  

General procedure for nanoparticles preparation 

The AuNPs were prepared following a described protocol.28 A 0.012M (3 equiv) solution of the 

commercially available linker 2 and of the α-fucosyl amide disulfide 4 (in different proportions) in 

1:1 MeOH/H2O was added to a solution of tetrachloroauric acid (0.025M, 1 equiv) in water. An 

aqueous solution of NaBH4 (1M,  22 equiv) was then added in four portions, with rapid shaking. 

The black suspension formed was shaken for an additional 2 h at room temperature. After this time 

the nanoparticles were purified by centrifugal filtration (Vivaspin filters, 10000 MWCO). The 

solution was finally lyophilized to afford the desired AuNPs. 1H-NMR spectra of the obtained 

AuNPs were recorded. The particle size distribution of the gold nanoparticles was evaluated from 

HRTEM micrographs by means of an automatic image analyser. The average molecular formula of 

the nanoparticles was calculated on the basis of the average diameter obtained by TEM.37 

AuNPs 5a: (100% linker 2): Reaction of 2 (50.0 mg, 0.055 mmol) in MeOH/H2O 1:1 (9 mL) with 

HAuCl4·3H2O (14.6 mg, 0.037 mmol) in 1.5 mL H2O and NaBH4 (0.8 mL, 1 M) gave AuNPs 5a 

(11.6 mg) as a dark-brown powder. TEM average diameter: 2.2 ± 1.5 nm, calculated molecular 

formula and molecular weight: C1656H3496Au309O920S92, M.W.: 101946. 1H NMR (400 MHz, D2O): 

δ 2.52-2.62 (m, 2H, HOOCCH2CH2O-), 3.53-3.80 (m, 32H, CH2O).  

AuNPs 5b: (15% fucose, 85% linker 2): Reaction of bis-α-fucosyl-amide derivative 4 (5.4 mg, 

0.004 mmol) and linker 2 (17.0 mg, 0.0185 mmol) in MeOH/H2O 1:1 (4.4 mL) with HAuCl4·3H2O 

(7.0 mg, 0.018 mmol) in 720 µL H2O and NaBH4 (400 µL, 1 M) gave AuNPs 5b (5.5 mg) as a 
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dark-brown powder. TEM average diameter: 2.81 ± 0.71 nm, calculated molecular formula and 

molecular weight: C3174H6554Au807N48O1726S163, M.W.: 237194. 1H NMR (400 MHz, D2O): δ 1.16 

(m, 0.45H, CH3 Fuc), 2.42-2.70 (m, 2.3H, -NHCOCH2CH2O- Fuc-NHCOCH2CH2NH-, -

HOOCCH2CH2O), 3.43 (m, 0.3H, Fuc-NHCOCH2CH2NH-), 3.49-3.92 (m, 32H, CH2O), 3.93-4.09 

(m, 0.45H, H-5 Fuc, H-4 Fuc, H-3 Fuc), 4.12 (m, 0.15H, H-2 Fuc), 5.53 (m, 0.15H, H-1 Fuc).  

AuNPs 5c: (30% fucose, 70% linker 2): Reaction of bis-α-Fucosyl-amide derivative 4 (11.0 mg, 

0.0082 mmol) and linker 2 (17.0 mg, 0.0185) in MeOH/H2O 1:1 (4.6 mL) with HAuCl4·3H2O (7.8 

mg, 0.0198 mmol) in 730 µL H2O and NaBH4 (400 µL, 1 M) gave AuNPs 5c (5.3 mg) as a dark-

brown powder. TEM average diameter: 1.92 ± 0.69 nm, calculated molecular formula and 

molecular weight: C1488H3013Au225N42O794S71, M.W.: 80795. 1H NMR (400 MHz, D2O): δ 1.15 (m, 

0.9H, CH3 Fuc), 2.40-2.68 (m, 2.6 H, -NHCOCH2CH2O- Fuc-NHCOCH2CH2NH-, -

HOOCCH2CH2O), 3.42 (m, 0.6H, Fuc-NHCOCH2CH2NH-), 3.48-3.92 (m, 32H, CH2O), 3.93-4.09 

(m, 0.9H, H-5 Fuc, H-4 Fuc, H-3 Fuc), 4.13 (m, 0.3H, H-2 Fuc), 5.53 (m, 0.3H, H-1 Fuc).  

AuNPs 5d: (50% fucose, 50% linker 2): Reaction of bis-α-fucosyl-amide derivative 4 (23.5 mg, 

0.017 mmol) and linker 2 (15.6 mg, 0.017 mmol) in MeOH/H2O 1:1 (5.6 mL) with HAuCl4·3H2O 

(9.0 mg, 0.023 mmol) in 920 µL H2O and NaBH4 (500 µL, 1 M) gave AuNPs 5d (8.8 mg) as a 

dark-brown powder. TEM average diameter: 2.14 ± 0.7 nm, calculated molecular formula and 

molecular weight: C2098H4148Au314N92O1094S91, M.W.: 112937. 1H NMR (400 MHz, D2O): δ 1.17 

(m, 1.5H, CH3 Fuc), 2.42-2.70 (m, 3H, -NHCOCH2CH2O- Fuc-NHCOCH2CH2NH-, -

HOOCCH2CH2O), 3.46 (m, 1H, Fuc-NHCOCH2CH2NH-), 3.50-3.92 (m, 32H, CH2O), 3.93-4.10 

(m, 1.5H, H-5 Fuc, H-4 Fuc, H-3 Fuc), 4.12 (m, 0.5H, H-2 Fuc), 5.53 (m, 0.5H, H-1 Fuc).  

 

Biological assays. Cells: Human monocyte-derived DC were generated from monocytes as 

previously described.38 Briefly, monocytes were isolated from the blood of healthy donors 

(Sanquin, The Netherlands) through a sequential Ficoll/Percoll gradient centrifugation. Isolated 

monocytes (purity > 85 %) were cultured in RPMI 1640 (Invitrogen, USA) supplemented with 10% 

FCS (BioWhittaker, USA), 1000 IU/ml penicillin (BioWhittaker, USA), 1000 IU/ml streptomycin 

(BioWhittaker, USA), and 2 mM glutamine (BioWhittaker, USA) in the presence of interleukin-4 

(IL-4) (500 IU/ml; BioSource, Belgium) and granulocyte-macrophage colony-stimulating factor 

(GM-CSF) (800 IU/ml; BioSource, Belgium) for 7 days.39 Monocyte differentiation into DC was 

confirmed by flow cytometric analysis (FACScan, BD biosciences, USA) of the expression of DC-

SIGN using the monoclonal antibody AZN-D140 followed by staining with a secondary FITC-

labeled anti-mouse antibody (Zymed, San Francisco, CA). 
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Stable K562/DC-SIGNLL/Y transfectants
33 were maintained in RPMI 1640 medium containing 10% 

Fetal Calf Serum 1000 IU/ml penicillin (BioWhittaker, USA), 1000 IU/ml streptomycin 

(BioWhittaker, USA), and 2 mM glutamine (BioWhittaker, USA). Transfectants were regularly 

selected using 1 mg/ml Geneticin (Invitrogen, USA). To check for DC-SIGN expression, cells were 

incubated with primary antibody (AZN-D1) followed by staining with a secondary FITC-labeled 

anti-mouse antibody (Zymed, USA) and analyzed by flow cytometry on a FACScan flow cytometer 

(BD Biosciences, USA). Cell viability was measured using 7-amino actinomycin D (Invitrogen, 

USA). 

DC-SIGN-Fc ELISA.
31 Nunc MaxiSorp plates were coated with 50 µL AuNPs (15 µg/mL in 

coating buffer, 50mM Na2CO3, pH=9.7) for 2 h at room temperature. The wells were washed twice 

with TMS (2x200µL) and blocked with 100 µL TMS with 1% of BSA for 30 min at room 

temperature. After 1x200µL wash with PBS, the wells were incubated at 37°C with 50 µL DC-

SIGN-Fc (3 µg/mL) in TMS with 1% of BSA for 1 h. The wells were washed four times with TMS 

(4x200µL) and incubated at room temperature with 50 µL of Goat-anti human HRP (0.8 µg/mL) in 

TMS with 1% of BSA for 30 min. After four washes with TMS (4x200µL), 100 µL of substrate 

solution (3,3′,5,5′-Tetramethylbenzidine, TMB, in citric/acetate buffer, pH=4, and H2O2) were 

added and after 4 min at room temperature the reaction was stopped with 50 µL of H2SO4 (0.8M) 

and the plate was read at 450 nm ELISA reader. All the experiments were performed in triplicate. 

DC-SIGN/Fc consists of the extracellular portion of DC-SIGN (residues 64 to 404) fused at the C-

terminus to a human IgG1/Fc fragment into the Sig-pIgG1-Fc vector.41 DC-SIGN/Fc was produced 

in CHO-K1 cells by co-transfection of DC-SIGN-Sig-pIgG1 Fc (20 µg) and the pEE14 (5 µg) 

vector. 

Preparation of gp120-coated beads. Fluorescently labelled gp120-microbeads were generated in a 

similar way as was described for ICAM-1 beads.42 In brief, carboxylate-modified TransFluoSpheres 

(488/645 nm, 1.0 µm, Invitrogen) were coupled to streptavidin (Sigma) followed by incubation with 

biotinylated F(ab’)2 fragment goat-anti-human IgG Fc fragment (0.5 mg/ml, Jackson Immuno 

Research) for 2 hours at 37°C. Next, the beads were washed and coupled to purified HIV-1 gp120-

Fc protein (1 µg/ml) by an overnight incubation at 4°C. After extensive washing in ice-cold PBS, 

beads were reconstituted in 50 µl of PBS. 

Gp120 binding assay. Stable K562/DC-SIGNLL/Y transfectants (5 × 104 per well) were incubated 

with gold nanoparticles for 45 min at 37°C. Next, gp120 fluorescent beads were added to the cells 

and incubated for another 45 min at 4°C. The percentage of gp120 beads-positive cells was 

analyzed by flow cytometry (BD Biosciences, USA).  
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Flow cytometry analysis of DC surface molecules and cytokine production. Suspensions of 100 

µL immature DCs (1.106 cells/mL) were stimulated by addition of AuNPs (1 µg/mL) for 16-20 

hours at 37°C in the presence of 5% CO2. 10 ng/mL LPS (E. coli, Sigma-Aldrich) served as a 

control. Cells were then collected by centrifugation, washed with 1% BSA in phosphate-buffered 

saline and incubated with mouse anti-human CD86 conjugated with phycoerythrin (PE, BD 

Pharmingen, San Diego, CA). After 30 min incubation at 4°C, cells were analyzed using a flow 

cytometer (FACS Calibur, BD Biosciences, USA).  

IL-10 ELISA. For the detection of IL-10, culture supernatants were harvested 24 h after DC 

stimulation and frozen at -80°C until analysis. Cytokines were measured by ELISA using antibody 

pairs from eBioscience (The Netherlands) and according to manufacturer's protocols.  

Internalization assay. DCs were incubated in the presence of gold nanoparticles at either 4°C or 

37°C for 60 min. Cells were then washed, fixated, stained against DC-SIGN using the polyclonal 

antibody CSRD36 and an AF488-labeled goat-anti-rabbit antibody, and then prepared for acquisition 

on the ImageStreamX (Amnis corp., Seattle) imaging flow cytometer. The following laser powers 

were used: 488 nm at 20 mW and 785 nm at 4.5 mW. Brightfield illumination was set at 800 mW 

before the acquisition of each sample. Brightfield images were collected in channels 1 and 9. 

Channels 2 (Atto488) and 6 (granularity) were habilitated for the internalization assay. Cells were 

acquired at 60x magnification and on the basis of their area (area = the number of pixels in an 

image reported in square microns). Minimum area for acquisition was set to 50 pixels. A minimum 

of 15 × 103 cells was acquired per sample at a flow rate ranging between 50 and 100 cells/s. At least 

2 × 103 cells were acquired from single stained samples to allow for compensation. Compensation 

samples were acquired with all channels habilitated and with the brightfield illumination and the 

785 nm laser switched off. A minimum of 5 × 103 cells from the single stained samples were 

acquired with the same settings as experimental samples to control for over/under compensation. 

Analysis was performed using the IDEAS v6.0 software (Amnis corp., Seattle) as previously 

described.43 The internalization score is a log-scaled ratio of the intensity inside the cell 

(intracellular mask) respect the intensity of the entire cell. Cells that have internalized antigen 

typically have positive scores while cells that show the antigen still on the membrane have negative 

scores. Cells with scores around 0 have similar amounts of antigen on the membrane and in 

intracellular compartments. 

Associated content 

Supporting Information 
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Table with tentative molecular formula. TEM micrographs, size-distribution histograms and 1H-

NMR spectra of gold nanoparticles. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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