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Recombinant AAV-Mediated BEST1Transfer to the Retinal Pigment
Epithelium: Analysis of Serotype-Dependent Retinal Effects

Abstract
Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of
retinal disorders commonly referred to as bestrophinopathies and usually diagnosed in early childhood or
adolescence. The disease primarily affects macular and paramacular regions of the eye leading to major
declines in central vision later in life. Currently, there is no cure or surgical management for BEST1-associated
disorders. The recently characterized human disease counterpart, canine multifocal retinopathy (cmr),
recapitulates a full spectrum of clinical and molecular features observed in human bestrophinopathies and
offers a valuable model system for development and testing of therapeutic strategies. In this study, the
specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2
promoter were assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype
was associated with cone damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector
serotype carrying either GFP reporter or BEST1 transgene under control of human VMD2 promoter was safe,
and enabled specific transduction of the RPE cell monolayer that was stable for up to 6 months post injection.
These encouraging studies with the rAAV2/2 vector lay the groundwork for development of gene
augmentation therapy for human bestrophinopathies.
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Abstract

Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of retinal disorders
commonly referred to as bestrophinopathies and usually diagnosed in early childhood or adolescence. The disease primarily
affects macular and paramacular regions of the eye leading to major declines in central vision later in life. Currently, there is
no cure or surgical management for BEST1-associated disorders. The recently characterized human disease counterpart,
canine multifocal retinopathy (cmr), recapitulates a full spectrum of clinical and molecular features observed in human
bestrophinopathies and offers a valuable model system for development and testing of therapeutic strategies. In this study,
the specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2 promoter were
assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype was associated with cone
damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector serotype carrying either GFP reporter or
BEST1 transgene under control of human VMD2 promoter was safe, and enabled specific transduction of the RPE cell
monolayer that was stable for up to 6 months post injection. These encouraging studies with the rAAV2/2 vector lay the
groundwork for development of gene augmentation therapy for human bestrophinopathies.
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Introduction

Disease-causing mutations in retinal pigment epithelium (RPE)

and photoreceptor specific genes are a major cause of vision

impairment worldwide. This is particularly devastating when the

genetic alteration leads to a phenotype that affects foveal vision

early in life and there are no treatment options available. Affected

children and adolescents gradually lose central visual acuity that

seriously impairs their quality of life in adulthood. Bestrophino-

pathies, both the autosomal dominant (Best Vitelliform Macular

Dystrophy, BVMD) and autosomal recessive (Autosomal Reces-

sive Bestrophinopathy, ARB) forms, belong to this group of

disorders. Caused by BEST1 (aka VMD2) mutations, this juvenile-

onset macular degeneration, characterized by an abnormal RPE-

photoreceptor interface and depressed EOG light peak, results in

poor vision evident during the later stages of the disease [1–3]. To

date, there is no specific treatment or surgical management for

BEST1-related retinopathies.

The BEST1 gene product, bestrophin1, is a multifunctional

protein associated with the basolateral plasma membrane of the

RPE where it primarily acts as an anion channel and regulator of

intracellular calcium signaling [4–7]. To date, nearly 200 disease-

causing mutations have been identified in human BEST1

(hBEST1), and the in vitro analysis of their molecular and functional

consequences revealed a total loss of Best1 channel activity in ARB

or altered anion conductance due to defective intracellular

trafficking and protein folding in BVMD [3,8–10]. However,

some aspects of the disease etiology and molecular pathology

remain controversial [8–9]. Taking into account the considerably

variable expressivity of BEST1-associated phenotypes and the fact

that only a small percentage of BEST1 mutations have been

carefully studied, other unrecognized molecular mechanisms

might contribute to the bestrophinopathy phenotypic spectrum.

Thus, identification and development of a reliable animal model is

critical to conduct translational research and address major

unsolved questions in the disease pathogenesis.

Canine multifocal retinopathy (cmr), a spontaneous, early-onset

autosomal recessive disease caused by mutations in the BEST1 dog

ortholog, recapitulates the full spectrum of clinical, genetic and

histological features observed in BEST1-affected patients [11–14].

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e75666



The cmr disorder results from any of the three distinct mutations

identified to date in canine BEST1 (cBEST1) that model all major

aspects of known disease-associated mutations and their molecular

consequences described in man: cmr1 (C73T/R25X), an early stop

mutation resulting in Best1 null phenotype; cmr2 (G482A/G161D), a

missense change affecting protein folding and trafficking; and cmr3

(C1388del/P463fs), a frameshift mutation truncating the bestro-

phin1 C-terminus [11–14]. Since its discovery, cmr has been

recognized as an important animal model for human bestrophi-

nopathies suitable not only for carrying out mechanistic studies,

but also for development and testing of therapeutic strategies such

as recombinant adeno-associated virus (rAAV) based gene

augmentation therapy.

Over the last decade, rAAV vectors have been proven safe in

ocular tissue, and their versatility increased their use as gene

delivery tools. Successful outcomes from the first clinical trials in

patients affected with RPE65 form of LCA were reported and have

shown safety and efficacy [15–18]. While the rAAV2/2 serotype is

the most widely used rAAV vector in preclinical and clinical trials

when targeting the RPE, the rAAV2/1 serotype, which has also

been shown to target this cell population [19], is thought to be

more RPE-specific [20]. In preparation for gene augmentation

therapy in cmr-affected dogs that could ultimately be translated to

human BEST1-associated disorders, we compared the rAAV2/1

and rAAV2/2 vector serotypes carrying GFP reporter or BEST1

transgene under control of human VMD2 promoter (hVMD2).

The onset, efficiency and stability of transgene expression, as well

as the potential adverse effects of a single subretinal injection with

either vector serotype, were evaluated in wild-type canine eyes.

Our findings provide evidence that the rAAV2/1-mediated

delivery of the BEST1 transgene potentially can cause cone-

selective damage in the transduced retina. In contrast, the

rAAV2/2 vector serotype is safe, specific, stable, and should be

considered further for developing gene augmentation therapies in

bestrophinopathies.

Results

A set of eighteen eyes from twelve dogs was used to determine

the cell specificity and level of rAAV-mediated GFP expression

regulated by the hVMD2 promoter in the normal canine retina.

The rAAV2/1 or rAAV2/2 vector serotypes encoding GFP

reporter gene under control of hVMD2 promoter (Fig. S1A) were

delivered by subretinal injection (Fig. 1, Tab. S1). Immediately

after vector administration, formation of the characteristic bleb

underlying the neural retina was observed, delimiting the injected

area of the fundus (Fig. 1 insert). In all cases, the retinal

detachment completely resolved within 24 hours post injection

(p.i.), and only the focal retinotomy scar remained visible. By

autofluorescence imaging, GFP expression was first detectable at 2

weeks p.i., and reached its expression peak between 4 – 6 weeks

p.i. (Fig. 1). The results obtained for rAAV2/1-hVMD2-GFP and

rAAV2/2-hVMD2-GFP were comparable and clinical assess-

ments throughout the injection-endpoint evaluation period did not

reveal any abnormalities with either vector construct in any of the

injected eyes.

Under control of the hVMD2 promoter, both vector serotypes

demonstrated specific and exclusive cellular tropism for the RPE

cell monolayer where the GFP reporter expression was detectable

as native green fluorescence that colocalized with specific anti-

GFP antibody labeling (Figs. 2, 3 and S2). In all cases, the extent of

GFP expression in the RPE corresponded to the vector bleb area

recorded immediately after subretinal injection. The gradual

increase of GFP expression levels over the first 6 weeks p.i., and its

stability up to 6 months after vector administration, were

confirmed by immunohistochemical staining (Fig. 2). When taking

into account the differences in total vector genomes injected, the

transduction efficiency was qualitatively comparable between

rAAV2/1 and rAAV2/2 serotypes (Fig. S2). Structural preserva-

tion of the retina was assessed by immunocytochemical staining 6

weeks p.i. using several RPE (Best1, RPE65) and cone (hCAR, L/

M&S opsin) and rod (Rho) specific markers (Fig 3). In all instances,

retinal structure was normal, and showed no damage to the RPE

or photoreceptor cells based on immunolabeling and by H&E

staining (Fig. 3A,B). Overall, there was no difference observed in

the transduction efficiency, onset or stability between rAAV2/1

and rAAV2/2 serotypes carrying the reporter gene and, most

importantly, no adverse effects were noted with either vector

secondary to the subretinal injection. Together, these findings

provided evidence that human VMD2 promoter drives stable and

specific transgene expression to the RPE cells in vivo after single

injection of rAAV2/1-hVMD2-GFP or rAAV2/2-hVMD2-GFP

vectors.

Subsequently, a modified vector construct encoding full-length

canine or human BEST1 cDNA driven by the same promoter (Fig.

S1B) was used to test rAAV-mediated BEST1 transgene expression

in wild-type canine retinae. The vector dosage was 7.1061010–

2.0061012 vg and 3.9261011–1.0061012 vg injected for rAAV2/

1-hVMD2-BEST1 and rAAV2/2-hVMD2-BEST1, respectively

(Tab. S1). In addition, to monitor the bleb kinetics and the spatial

extent of a single subretinal injection, the rAAV2/1-hVMD2-

BEST1 vector constructs were spiked with the corresponding GFP

expressing vector at an average titer of 2.56109 vg/ml (Tab. S1,

Fig S3).

For this study, a total of 11 normal eyes from eleven control

dogs were subretinally injected with rAAV2/1 or rAAV2/2

carrying wild-type either canine or human BEST1 and evaluated

at several time points p.i. (Tab. S1). Similar to the prior reporter

gene studies, the subretinal injection bleb resolved within 24 hours

p.i., and the corresponding bleb boundaries were detectable by

near-infrared reflectance imaging up to 4 weeks after vector

administration (Fig. 4A). For the rAAV2/1-GFP-spiked injections,

discrete areas of fluorescence were clearly visible in the autofluo-

rescence mode over a 6 week monitoring period (Figs. 4A, S3).

Again, all eyes used in this phase of experiment appeared clinically

asymptomatic after the retinal reattachment and no obvious

changes were noted throughout the observation period by routine

fundus examination. The in vivo OCT imaging did not reveal

changes in the retinal structure for any of the injected eyes, and,

with either vector; the retinal thickness profiles were normal, and

not different between the injected and non-injected regions

(Fig. 4B).

The rAAV-mediated cBEST1 transgene expression in the

normal canine retina was evaluated 4- and 6 weeks and 6 months

p.i. (Tab. S1). While the endogenous expression of Best1 was

limited to the basolateral plasma membrane, the transgene protein

- found only in the bleb area - was localized within the RPE cell

cytoplasm as a result of vector mediated overexpression; the results

were the same with either vector (Fig. 5 illustrates the findings with

rAAV2/2). The consequences of rAAV2/1- and AAV2/2-induced

cBEST1 expression in the normal retina were compared at 4 weeks

p.i., and retinal preservation was assessed by H&E staining and

cell-specific immunolabeling (Fig. 6). Even though the H&E

staining did not indicate any morphological abnormalities with

either vector serotype, specific immunolabeling and fluorescence

microscopy of the rAAV2/1-hVMD2-cBEST1-transduced

regions revealed green autofluorescence in individual photorecep-

tor cells, patchy to generalized loss of cone photoreceptors and

AAV-Mediated BEST1 Tansfer to the RPE
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mislocalization of both cone and rod opsins in treated areas (Fig. 6).

Mislocalized rod opsin was seen in the inner segments (IS), outer

nuclear layer (ONL) and in the outer plexiform layer, whereas the

misrouted L/M & S opsins in some of the remaining cones were

detected only in the ONL of rAAV2/1-hVMD2-cBEST1-injected

areas (Fig. 6). In contrast, bestrophin1 expression mediated by the

rAAV2/2-hVMD2-cBEST1 construct did not result in any

photoreceptor, RPE or retinal abnormalities (Fig. 6). There was

no evidence of any inflammatory response in any of the injected

eyes.

Furthermore, co-expression of the canine endogenous and

human BEST1 transgene was tested in the wild-type dog retina

and evaluated at 4- and 6 weeks post injection. Both vector

serotypes resulted in Best1 transgene expression in the RPE

monolayer at 4 weeks p.i. (Fig. 7A,B). Again, whilst the co-

expression of endogenous canine and human bestrophin1

transgene is well tolerated when mediated by rAAV2/2 serotype

(Fig. 7B), introduction of rAAV2/1-hVMD2-hBEST1 vector

construct with a low level of corresponding vector expressing

GFP resulted in patchy to generalized loss of cones and rather

robust green fluorescence emitted by individual photoreceptor

cells that, presumably, were damaged (Fig 7A). There were no

RPE/photoreceptor/retinal alterations found in the rAAV2/2-

hVMD2-hBEST1-injected eyes at 4- or 6 weeks p.i. (Fig. 7B).

We then determined whether the RPE/retinal abnormalities

observed with rAAV2/1-hVMD2-BEST1 were vector dose-

dependent. To this end, the two vector serotypes carrying cBEST1

were administered to the cmr1 (C73T/R25X) carrier retinae that

express half the normal levels of endogenous Best1 [13]

(Fig. 7C,D). Delivery of rAAV2/1-hVMD2-cBEST1 (7.1061010

– 1.9261011 vg) or rAAV2/2-hVMD2-cBEST1 (4.4461011 vg)

still resulted in bestrophin1 overexpression in cmr1+/2 model at 4

weeks p.i. (Fig. 7C,D). Similar to the prior experiments with

rAAV2/1, absence or reduced number of cones was observed in

the rAAV2/1-hVMD2-cBEST1-injected region, albeit the routine

H&E staining did not indicate structural damage to the tissue

(Fig. 7C). In contrast, the cmr1+/2 retina transduced with rAAV2/

2 serotype showed no adverse effects (Fig. 7D).

Discussion

Progressive loss of central vision due to mutations in the BEST1

gene is one of the most common causes of hereditary early

macular degeneration [21]. Despite the fact that this ocular

condition was first described over a century ago [22], the causal

Figure 1. Recombinant AAV-mediated GFP expression in the canine eyes by fundus autofluorescence imaging. A representative
summary of findings from rAAV2/2-hVMD2-GFP injected canine eyes. A normalized autofluorescence mode was used to obtain a baseline
photograph for the native eye before vector administration (A). GFP fluorescence was first detectable at 2 weeks p.i. (B, arrowheads) and the outline
of the injection area corresponded to the subretinal bleb documented immediately after vector administration (A, inset). An evident increase in GFP
expression was observed at 4 to 6 weeks p.i. (C, D), when the peak of rAAV vector expression is expected. The boundaries of the autofluorescent
areas (arrowheads), as well as retinotomy scar (arrows) remained unchanged throughout the observation period. High-resolution images were
captured in AF mode at 55u; p.i.: post injection.
doi:10.1371/journal.pone.0075666.g001

AAV-Mediated BEST1 Tansfer to the RPE
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mechanism underlying its pathology is still poorly understood, and

no cure is available. Here, we report studies on rAAV-mediated

transgene expression using the human bestrophin promoter

(hVMD2) in a large animal model as a first step towards

developing gene augmentation therapy for human bestrophino-

pathies.

Although the stability and safety of rAAV2/2-mediated

transgene expression in the canine retina has been previously

assessed [19,23] and successfully translated to the human subjects

(for review see [18]), this is the first study using rAAV2/1 and

rAAV2/2 vectors incorporating the hVMD2 promoter to evaluate

their potential use in RPE-directed gene therapy. Initially, the

specificity, stability and safety of the constructs carrying GFP

reporter gene controlled by the hVMD2 promoter were tested in

the wild-type canine retina. A single subretinal injection of

rAAV2/1-hVMD2-GFP or rAAV2/2-hVMD2-GFP specifically

and exclusively targeted transgene expression to the RPE cells, and

no significant difference in onset, expression level or stability was

observed between the two serotypes. Most importantly, no adverse

effects were noted, either in the RPE or neuroretina, with either

vector construct secondary to the subretinal injection.

Following these encouraging results from the pilot study, the

efficiency and BEST1 transgene expression was compared

between the rAAV2/1 and rAAV2/2 serotypes. A dose range of

7.1061010 – 2.0061012 vg injected was tested in a set of 11

normal canine eyes delivering either canine or human BEST1

transgene. In each case, introduction of BEST1 into the wild-type

retinae induced bestrophin1 expression limited to RPE cells of the

injected area. The eyes did not demonstrate any clinical

abnormalities, and all injected areas appeared histologically

normal with H&E staining. There was no inflammatory response

observed in any of the injected eyes. However, rAAV2/1 injected

eyes with either human or canine BEST1, and containing low-level

of corresponding vector expressing GFP reporter gene, revealed

numerous photoreceptor cells, and, as expected, some RPE cells,

that emitted green fluorescence. Based on their morphology and

nuclear position, we interpreted the majority of the fluorescent

photoreceptors to be cones. While this was confirmed, unexpect-

edly, we also found with photoreceptor specific immunolabeling

that in all rAAV2/1-hVMD2-BEST1-treated areas there was a

patchy to generalized loss of cones as well as mislocalization of

cone and rod opsins. The loss of cones observed in all rAAV2/1-

hVMD2-BEST1-injected regions was evident by lack of hCAR

and L/M&S cone opsins immunoreactivity, as well as absence or

reduced number of cone photoreceptor cells visualized by

Nomarski DIC microscopy (data not shown). Such photoreceptor

toxicity was not observed when using the rAAV2/2 vector at the

same dosage level, or when using comparable doses of either

rAAV2/1 or rAAV2/2 expressing only the GFP transgene and

regulated by the hVMD2 promoter. We previously have found

cone-specific damage in the canine retinae transduced with high

doses (1.51–4.7961013 vg/ml) of rAAV2/5-GFP vectors with the

hGRK1 or CBA promoters [24]. These vector doses, however,

were ,10,000 fold higher than the doses of GFP containing vector

used to delimit the injected areas.

To exclude a vector-dose effect, the two vector serotypes were

evaluated in asymptomatic cmr1 (C73T/R25X) carrier retinae that

express only half the normal levels of endogenous Best1 [13]. The

extent of cone-selective damage caused by rAAV2/1 transduction

was comparable to that detected in the wild-type tissue. It is not

clear at this time whether the damage and loss of cones was a

direct effect, i. e. resulted from transduction of cones with the

Figure 2. Specificity and stability of rAAV-mediated RPE transduction regulated by hVMD2 in the canine retina. The rAAV2/2 vector
construct carrying GFP reporter gene under control of human VMD2 promoter specifically and exclusively target transgene expression to the RPE
cells. Native (green) or anti-GFP probed (red) GFP expression was analyzed on frozen retinal cross-sections 2- (9.1161010 vg), 4- (1.2161011 vg), 6-
(9.1161010 vg) weeks, and 6 months (9.1161010 vg) post injection. Immunohistochemical staining confirmed the gradual increase of the transgene
expression level over the first 6 weeks p.i. that remained stable up to 6 months after vector administration. DAPI stain was used to detect cell nuclei;
vg: vector genomes injected; p.i.: post injection; scale bar: 40 mm.
doi:10.1371/journal.pone.0075666.g002

AAV-Mediated BEST1 Tansfer to the RPE
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vector, or an undefined indirect effect via RPE transduction. The

interaction between rAAV2/1-hVMD2-BEST1 and the rAAV2/

1-GFP reporter construct cannot be ruled out, although the

rAAV2/1-hVMD2-GFP vector construct by itself proved to be

non-toxic to the retina. Furthermore, the effect of rAAV2/1

serotype capsid and its interaction with cell surface receptors

cannot be eliminated either and might influence transduction

pattern and, consequently, the delicate microenvironmental

balance of the interphotoreceptor matrix. Considering that

transgene expression levels are dose-dependent, and the physio-

logical level of Best1 expression in the wild-type RPE cells are

relatively low and limited to the basolateral plasma membrane,

determination of a lower, safer and effective dosages of rAAV2/1-

hVMD2-BEST1, without GFP admixture, may be important for

future analysis. Because of the observed rAAV2/1-hVMD2-

BEST1-associated cone toxicity this vector-promoter combination

was not evaluated further in the present study. However, it will be

a subject of more in depth future investigations.

It important to consider the cone-selective damage found in the

canine retina in the context of future pre-clinical safety studies.

While non-human primates or pigs have very distinct cones that

are readily visualized by conventional histopathology in H&E

stained sections, cones in dogs, mice and rats are difficult to

identify, and damage to these cells, in the absence of a generalized

photoreceptor atrophy, may go unrecognized. For that reason, we

would suggest that specific immunolabeling of cones should be

incorporated in safety assessments.

This work provides evidence that bestrophin1 overexpression

mediated by rAAV2/2 serotype has no adverse effects on the RPE

or retina, and BEST1 transgene expression is RPE-specific and

stable. There was no evidence of retinal toxicity in the four eyes

that have been followed for 4–6 weeks post injection. Additionally,

one wild-type eye treated with cBEST1 transgene was followed for

6 months p.i. and also showed no evidence of toxicity. These

preliminary results suggest that Best1 overexpression in the RPE

results in no adverse effects. However, ongoing long-term studies

on rAAV2/2-hVMD2-BEST1-mediated overexpression need to

be concluded. Our findings to date strongly suggest that this

approach is safe and might be useful in a mutation-independent

basis. Thus, gene augmentation alone might be applied to all

Figure 3. Comparison of rAAV2/1- and rAAV2/2-mediated GFP expression in the wild-type canine retina. Immunohistochemical
assessment of rAAV2/1-hVMD2-GFP (2.6361011 vg) (A) and rAAV2/2-hVMD2-GFP (9.1161010 vg) (B) injected retinas 6 weeks post injection. GFP
expression (native expression = green; anti-GFP antibody = red) is shown only in the first row of images; selected retinal and RPE proteins were
evaluated by antibody labeling. RPE cells expressed Best1 and RPE65 proteins; the structure of cone photoreceptors was demonstrated by hCAR and
L/M & S opsin labeling, while rods were assessed based on Rho localization. In all cases, protein expression was normal, specific and comparable to
the non-injected eyes (data not shown), irrespective of the recombinant vector serotype used. Preservation of the retinal structure is demonstrated
by H&E. RPE: retinal pigment epithelium, OS: photoreceptor outer segments; IS: photoreceptor inner segments; ONL: outer nuclear layer; INL: inner
nuclear layer; cell nuclei were stained with DAPI; vg: vector genomes injected; scale bar: 40 mm.
doi:10.1371/journal.pone.0075666.g003
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autosomal recessive and to those autosomal dominant mutations

resulting in protein haploinsufficiency [25]. It is still to be proven

whether gene augmentation alone is effective in cases where a

dominant negative effect is suspected or whether the combination

of mRNA silencing/resistant replacement strategy might be

necessary [26–27]. Surprisingly, gene augmentation alone has

been used successfully in the canine model of X-linked retinitis

pigmentosa caused by RPGRORF15 microdeletion that resulted

from a putative toxic gain of function [25,28]. Fortunately for

bestrophinopathies it is possible to model the human and canine

mutations in vitro and determine the optimal therapeutic approach

[13].

Co-expression of canine endogenous and rAAV2/2-mediated

human BEST1 transgene is well tolerated in the wild-type retina.

This strengthens the model system even more and will facilitate the

Figure 4. Evaluation of rAAV2/1- and rAAV2/2-mediated BEST1 transgene expression in the canine retina. (A) Comparison of two
normal canine eyes that received subretinal injection of rAAV2/1 (1.9461011 vg) and a spike-in of corresponding vector expressing GFP (3.816109 vg)
or rAAV2/2 (3.9261011 vg) expressing canine BEST1 under control of human VMD2 promoter. The outlines of the injected areas detectable in NIR
mode and more evident in AF mode for rAAV2/1 (arrowheads) corresponded to the bleb formed immediately after injection (insets). The arrows
indicate retinotomy sites. (B) Retinal thickness profiling done by manual segmentation across the bleb boundaries revealed no significant changes 4
weeks p.i. with either vector construct. High-resolution OCT images were obtained using a 30u lens; NIR and AF images were captured using a 55u
lens; vg: vector genomes injected; p.i.: post injection.
doi:10.1371/journal.pone.0075666.g004
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translational studies of Best1 therapy in the future. Proof of

concept studies in cmr-affected dogs are currently in progress.

Many canine diseases have clinical and molecular human

counterparts [29–30]. The latest successes using rAAV-mediated

gene augmentation therapy, first evaluated in large animal models

[19,23] and then translated to clinical use [15–18], have paved a

way for considering recombinant AAV vectors for treatment of

other human retinopathies previously considered untreatable. Our

study on rAAV-mediated BEST1 transgene expression in the

canine RPE represents a first step towards gene augmentation

therapy for bestrophinopathies. The unique combination of a

spontaneous animal model on a stable genetic background with

anatomical and phenotypic similarities to the human eye provides

the exceptional opportunity to develop and test treatment options

that can rapidly be translated to the clinic.

Materials and Methods

Animals
Twenty-nine eyes of young adult crossbred controls (23 dogs;

n = 29 eyes) or three cmr1 carriers (n = 5 eyes) were used in this

study (Tab. S1). All animals were bred and maintained at the

Retinal Disease Studies Facility (RDSF), Kennett Square, PA and

supported by facility grants from FFB and NEI/NIH EY06855.

The studies were carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health, and in

compliance with the ARVO Statement for the Use of Animals in

Ophthalmic and Vision Research. The protocols were approved

by the Institutional Animal Care and Use Committee of the

University of Pennsylvania (IACUC Protocol #s 801870, 803422).

All efforts were made to improve animal welfare and minimize

discomfort.

Vector production
The human VMD2 promoter driving ‘‘humanized’’ GFP

reporter [31] or BEST1 gene was evaluated in recombinant

adeno-associated virus vector serotypes 1 (rAAV2/1) or 2

(rAAV2/2). Briefly, the hVMD2 promoter [32] (courtesy of D. J.

Zack, Johns Hopkins University) was ligated into a recombinant

AAV vector plasmid containing GFP or cBEST1 or hBEST1,

SV40 splice donor/acceptor sites and polyadenylation signal (Fig.

S1). The resulting plasmid constructs, hVMD2-GFP, hVMD2-

cBEST1 or hVMD2-hBEST1 were then packaged into rAAV

using standard vector preparation methods [31,33] and titered for

DNase-resistant vector genomes by RT-PCR relative to a standard

using oligonucleotides targeting the SV40 polyadenylation signal

(Forward: 59-TTT GTG AAA TTT GTG ATG CT-39; Reverse:

59-TGA ATG CAA TTG TTG TTG TT-39). The reaction mix

was set up using iQ SYBRH Green Supermix (Bio-Rad

Laboratories, Hercules, CA) and performed in a MyiQTM Real-

Time PCR Detection System (Bio-Rad Laboratories, Hercules,

CA). Titers were calculated using the MyiQTM Optical System

Software, (Bio-Rad Laboratories Hercules, CA). The standard

used for the Real-Time PCR was a rAAV with a known titer that

was independently verified by PCR, dot blot and Infectious Center

Assay (Vector Core Facility, University of Florida). Finally, the

purity of the vector was validated using three standard assays.

First, by silver-stained SDS-PAGE to confirm presence of the three

capsid proteins; secondly, by assay screening for bioburden by

spreading 10 ml of the final product on a non-selective LB-agar

plate; and lastly, the final product was assayed for endotoxins using

the Endosafe-PTS, portable test system (Charles River Laborato-

ries, Charleston, SC, USA). For the rAAV2/1-hVMD2-BEST1

vectors with GFP spike-in, a portion of vector plasmid was used to

package the GFP transgene. The amount of final GFP virus in the

ad-mixture was determined by RT-PCR tittering with oligonu-

cleotides targeted GFP cDNA. The average titer of the GFP

component was 2.56109 vg/ml, with a range of 1.056109 to

3.816109 vg/ml. Viral vector stocks were kept at 280uC in

Balance Salt Solution (BSS; Alcon, Fort Worth, TX, USA), and all

subsequent dilutions were prepared using BSS.

Figure 5. Bestrophin1 overexpression induced by rAAV2/2 in the wild-type canine retina. Confocal photomicrographs illustrating Best1
expression (red) in the wild-type canine RPE six months p.i. The endogenous expression of Best1 (boxed area left and corresponding magnification)
was limited to the basolateral plasma membrane while the transgene protein was also observed in the cell cytoplasm as a result of overexpression
mediated by rAAV2/2-hVMD2-cBEST1 (3.9261011 vg) (boxed area right and corresponding magnification). Cell nuclei were stained with DAPI; vg:
vector genomes injected; p.i.: post injection; scale bar: 40 mm.
doi:10.1371/journal.pone.0075666.g005
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Subretinal injection and postoperative procedures
Subretinal injections of rAAV2/1 or rAAV2/2, carrying the

GFP reporter or BEST1 wild-type cDNA sequence (canine or

human), were performed under general anesthesia following

previously published procedures [24–25,34]. A total volume of

90–200 ml of the viral vector solution, with different vector

genome concentrations, was injected subretinally with a RetinaJect

subretinal injector (SurModics Inc., Eden Prairie, MN, USA)

under direct visualization with an operating microscope via a

transvitreal approach without vitrectomy (Tab. S1). Each injection

was directed to the superior temporal quadrant of the eye, a region

with a uniform density of cone photoreceptors [35]. Fundus

visualization was achieved with either a Machemer magnifying

vitrectomy lens (OMVI; Ocular Instruments Inc., Bellevue, WA,

USA), or a vitreoretinal surgery contact lens (AcrivetVit.Lens;

Acrivet, Salt Lake City, UT, USA). Directly after injection,

formation of a subretinal bleb was documented. An anterior

chamber paracentesis was performed immediately after injection

to prevent increase in intraocular pressure, followed by subcon-

junctival injection of 4 mg of triamcinolone acetonide.

Ophthalmic examinations, including biomicroscopy, indirect

ophthalmoscopy and fundus photography, were conducted on a

regular basis throughout the injection-endpoint evaluation time

Figure 6. Consequences of rAAV2/1- and rAAV2/2-induced BEST1 transgene expression in vivo. Histological and immunohistochemical
evaluation of wild-type canine retinae injected with rAAV2/1-hVMD2-cBEST1 (2.6361011 vg) and a spike-in of corresponding vector expressing GFP
(2.56109 vg) or rAAV2/2-hVMD2-cBEST1 (4.4461011 vg) in comparison to the non-injected control. H&E staining did not reveal any histological
changes with either vector serotype. Both vectors induced bestrophin1 overexpression in the RPE cells 4 weeks post injection (Best1, red). While no
abnormalities were observed in rAAV2/2-transduced retina, the rAAV2/1 serotype caused fluorescence in individual photoreceptor cells (green),
occasional mislocalization of cone and rod opsins (arrowheads) and patchy loss of cone photoreceptors (arrows) in the rAAV2/1-hVMD2-cBEST1-
injected area. RPE: retinal pigment epithelium, OS: photoreceptor outer segments; IS: photoreceptor inner segments; ONL: outer nuclear layer; INL:
inner nuclear layer. Cell nuclei were stained with DAPI; vg: vector genomes injected; scale bar: 40 mm and applies to all panels.
doi:10.1371/journal.pone.0075666.g006
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interval. Postoperative topical medication included application of

atropine sulfate 1% ophthalmic ointment twice daily for 8 days,

followed by once daily for 3 days; and neomycin/ polymyxin B

sulfate/ dexamethasone ophthalmic ointment twice daily for 8

days, then once daily for 6 days. Systemic antibiotics (amoxicillin

trihydrate/ clavulanate potassium 12.5 mg/kg) were given orally

twice daily for 3 days, and prednisone tablets (1 mg/kg) were

administrated twice daily for 9 days, followed by once daily for 1

week.

In vivo retinal imaging
Imaging was performed under general anesthesia using a

cSLO/sdOCT instrument (SpectralisTM HRA/OCT, Heidel-

berg, Germany) on a bi-monthly basis. En face imaging was done

using near infrared mode (NIR) to register fundus changes, while

the native GFP expression was documented using short-

wavelength autofluorescence mode (AF); both modes with a 55u
lens. Spectral-domain optical coherence tomography (sd-OCT)

was performed with linear and raster scans using a 30u lens.

Figure 7. rAAV-mediated BEST1 transfer to the retinal pigment epithelium and cone toxicity associated with rAAV2/1 vector
serotype. (A-B) Co-expression of endogenous canine and human Best1 transgene in vivo. Histological and immunohistochemical analysis of wild-
type canine retinae injected with rAAV2/1-hVMD2-hBEST1 (1.1661012 vg) and a spike-in of corresponding vector expressing GFP (1.046109) (A) and
rAAV2/2-hVMD2-hBEST1 (8.8261011 vg) (B) at 4 weeks post injection. No structural abnormalities were seen by H&E staining in any of the samples. In
the retina transduced with rAAV2/1 capsid serotype (A), individual photoreceptor cells emitted green autofluorescence (arrowheads) as shown on the
photomicrographs probed with anti-Best1, anti-L/M & S opsin and anti-hCAR (red) (A). Cone-specific labeling revealed loss of cone photoreceptors
(arrows) only in the areas transduced with rAAV2/1 vector serotype (A). Co-expression of endogenous canine bestrophin1 and human BEST1
transgene was well tolerated when injected with rAAV2/2 serotype and no abnormalities were noted (B). (C–D) Comparison of rAAV2/1- and rAAV2/
2-mediated cBEST1 transgene expression in the cmr1 (C73T/R25X) carrier retina. Histological and immunohistochemical evaluation of cmr1+/2 retinae
injected with rAAV2/1-hVMD2-cBEST1 (1.9261011 vg) and a spike-in of corresponding vector expressing GFP (1.746109) (C) and rAAV2/2-hVMD2-
cBEST1 (4.4461011 vg) (D) at 4 weeks post injection. No morphological abnormalities were detected by H&E staining between the two capsid
serotypes (C–D). Sporadic autofluorescent cells (green) were observed in IS and ONL layers (C, arrowheads), and cone-specific immunolabeling (L/M
& S opsin and anti-hCAR in red) revealed focal loss of cone photoreceptors (arrows) within the rAAV2/1-hVMD2-cBEST1-injected area (C). rAAV2/2-
mediated cBEST1 transfer to the cmr1+/2 retina results in bestrophin1 overexpression in the RPE (D, Best1 in red) with no adverse effects in the retinal
tissue (D). RPE: retinal pigment epithelium, OS: photoreceptor outer segments; IS: photoreceptor inner segments; ONL: outer nuclear layer; INL: inner
nuclear layer. Cell nuclei were stained with DAPI; vg: vector genomes injected; scale bar: 40 mm and applies to all panels.
doi:10.1371/journal.pone.0075666.g007
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Linear scans were placed across regions of interest and images

were averaged (20 ART) and taken in a 30 degree area (line).

Raster scans covered a 30620 degree retinal areas with a 49

sequential B-scans, each one separated by 120 mm and with the

average of 9 ART. The representative OCT scans were manually

segmented to identify canine ELM and measure the ELM-ILM

thickness.

Immunohistochemistry
Histological assessment using standard H&E staining and

immunohistochemical analyses were performed on 10 mm

cryosections using standard protocols [24,36]. Antibodies direct-

ed against GFP, Best1, RPE65, rod opsin, human cone arrestin,

red/green cone opsin and blue cone opsin were used in single

immunolabeling reactions and visualized with Alexa Fluor

568 nm goat anti-rabbit or goat anti-mouse secondary antibody;

cell nuclei were stained with DAPI. Details of antibodies, dilution

and source are in Table S2. Slides were mounted (Gelvatol,

Sigma-Aldrich, St. Louis, MO, USA) and examined with by

epifluorescence or transmitted light microscopy (Axioplan; Carl

Zeiss Meditec).

Confocal microscopy
Confocal images were acquired on a Leica TCS-SP5 tunable

spectral confocal and multi-photon system with a Leica DM 6000

CFS upright microscope (Leica Microsystems, Wetzlar, Germany)

through a HCX PL APO 406(N.A. 1.25) or 606(N.A. 1.40) oil

immersion objectives. Alexa Fluor 568 was excited at 543 nm laser

line and emission collected at 574–700 nm in sequential scanning

mode by the tunable internal detectors. DAPI was excited with

multi-photon at 750 nm produced by a Coherent Chameleon

Ultra II Ti:sapphire pulse laser (Santa Clara, CA, USA) and

emission was collected at 380–500 nm.
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Supporting Information

Figure S1 Schematic diagrams of plasmid constructs
used for rAAV2-hVMD2-GFP and rAAV2-hVMD2-BEST1
vectors production. (A) Map of the pTR-VMD2-GFP plasmid

used to produce the rAAV2/1-hVMD2-GFP and rAAV2/2-

hVMD2-GFP vector constructs. (B). Map of the pTR-VMD2-

BEST1 plasmid used to produce the rAAV2/1-hVMD2-cBEST1,

rAAV2/2-hVMD2-cBEST1, rAAV2/1-hVMD2-hBEST1 and

rAAV2/2-hVMD2-hBEST1 vector constructs. TR: AAV2 invert-

ed terminal repeats; VMD2: human VMD2 promoter [32]; SV40

SD/SA: SV40 late viral protein gene 16S/19S splice donor and

acceptor signal; hGFP: ‘‘humanized’’ green fluorescence protein

reporter31; BEST1: coding sequence of wild-type canine BEST1 or

wild-type human BEST1 gene; SV40 (poly A) and bGH poly (A):

polyadenylation signals; HSK-tk: thymidine kinase promoter of

the herpes simplex virus; Neo R: coding sequence of the neomycin

resistance gene.

(TIF)

Figure S2 Transduction efficiency of rAAV2/1 and
rAAV2/2 vectors carrying GFP reporter under control
of human VMD2 promoter. Comparison of GFP expression

levels induced by rAAV2/1 (2.6361011 vg) or rAAV2/2

(9.1161010 vg) at 6 weeks p.i. Native GFP expression (green)

appeared more pronounced in the rAAV2/1 transduced RPE cells

as confirmed by a dilution series of anti-GFP antibody (red).

Expression levels induced with rAAV2/1 were detectable up to

1:75,000 dilution (left panel), while the rAAV2/2-mediated

expression could not be visualized beyond a 1:50,000 dilution

(right panel). Considering the difference in total virus genomes

injected, however, both vectors appear to be qualitatively similar

in transduction efficiency and both specifically target transgene

expression to the RPE cell monolayer. Cell nuclei were stained

with DAPI; vg: vector genomes injected; p.i.: post injection; scale

bar: 40 mm.

(TIF)

Figure S3 Monitoring the bleb kinetics and spatial
extent of single subretinal injection in the canine fundus.
(A–D) rAAV2/1-hVMD2-cBEST1-injected eye (1.9461011 vg/

ml) with a spike-in of corresponding vector expressing GFP

(3.816109 vg/ml); a higher magnification figure of part of the

fundus is shown in Fig. 4A. Composite fundus images NIR 55u
82u656u (A) and AF 55u ART 98ux58u (B) captured 4 weeks after

single subretinal injection of 150 ml. Note the GFP spiked area

visible in autofluorescence mode (B) delimiting the spatial extent of

injection (arrowheads). The arrow indicates retinotomy site. (C–D)

Single (C) and double (D) immunolabeling of anti-GFP (green) and

anti-hCAR (red). The GFP-positive cells scattered in the RPE

monolayer corresponded to the injection boundaries outlined by

AF mode (B). This area shows minimal damage to cones. Cell

nuclei were stained with DAPI; scale bar: 40 mm.

(TIF)

Table S1 Summary of injected subjects used in the
studies. Recombinant adeno-associated virus vectors and dosage

analyzed in total of 34 canine eyes. Eyes #: number of eyes

injected per each type of vector; vg: vector genomes injected;

Evaluation time point: post injection time by endpoint evaluation.

p.i.: post injection.

(DOCX)

Table S2 List of primary antibodies used for immuno-
labeling. Tissue sections were washed in 1XPBS/0.25% TX-100

for 5 minutes and blocked for 1 h (10% normal goat serum,

1XPBS/0.25% TX-100, 0.05% sodium azide). Overnight incu-

bation (at 4uC) with antibodies listed in the table was followed by

three 1XPBS washes and incubation with 1:200 Alexa Fluor

568 nm goat anti-rabbit (A11036, Invitrogen, Carlsbad, CA, USA)

or goat anti-mouse (A11031, Invitrogen, Carlsbad, CA, USA)

secondary antibody, respectively, for 1 h at room temperature.

(DOC)
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Table S1. Summary of injected subjects used in the studies. 

 

Vector construct Serotype Promoter Transgene Titer vg/ml Eyes # Volume vg injected Evaluation time point 

rAAV2-hVMD2-GFP 1 hVMD2 GFP 1.17x1012 - 1 120µl 2.64x1011 2 weeks p.i. 

    - 2.20x1013 1 150µl 3.30x1011 2 weeks p.i. 

     1 160µl 2.80x1011 2 weeks p.i. 

     1 120µl 1.40x1011 4 weeks p.i. 

     1 180µl 1.58x1011 4 weeks p.i. 

     1 150µl 2.63x1011 4 weeks p.i. 

     1 185µl 3.35x1012 4 weeks p.i. 

     1 190µl 3.44x1012 4 weeks p.i. 

     1 120µl 1.40x1011 6 weeks p.i. 

     1 150µl 1.76x1011 6 weeks p.i. 

     1 150µl 2.63x1011 6 weeks p.i. 

     1 150µl 1.31x1011 6 weeks p.i. 

rAAV2-hVMD2-GFP 2 hVMD2 GFP 6.07x1011 1 150µl 9.11x1010 2 weeks p.i. 

     1 150µl 9.11x1010 2 weeks p.i. 

     1 200µl 1.21x1011 4 weeks p.i. 

     1 150µl 9.11x1010 6 weeks p.i. 

     1 150µl 9.11x1010 6 weeks p.i. 

     1 150µl 9.11x1010 6 months p.i. 
 
 
 



 
 
Table S1 Continued 

Vector construct Serotype Promoter Transgene Titer vg/ml   Eyes # Volume vg injected GFP 
component Evaluation 

rAAV2-hVMD2-BEST1 1 hVMD2 cBEST1 1.29x1012 - 1 120µl 2.63x1011 1.74 x109 - 4 weeks p.i. 

    - 1.11x1013 1 140µl 1.53x1011 - 3.81x109 4 weeks p.i. 

     1 170µl 2.19x1011  4 weeks p.i. 

     1 180µl 2.00x1012  4 weeks p.i. 

     1 180µl 2.00x1012  4 weeks p.i. 

     1 150µl 1.94x1011  6 weeks p.i. 

     1* 90µl 1.92x1011  4 weeks p.i. 

     1* 100µl 7.10x1010  4 weeks p.i. 

     1* 100µl 1.07x1011  4 weeks p.i. 

rAAV2-hVMD2-BEST1 1 hVMD2 hBEST1 6.85x1012 1 170µl 1.16x1012 1.04x109 4 weeks p.i. 

     1* 150µl 1.03x1012  6 weeks p.i. 

rAAV2-hVMD2-BEST1 2 hVMD2 cBEST1 2.61x1012 1 170µl 3.92x1011  6 weeks p.i. 

     1 150µl 3.92x1011  6 months p.i. 

     1* 170µl 4.44x1011  4 weeks p.i. 

rAAV2-hVMD2-BEST1 2 hVMD2 hBEST1 5.88x1012 1 150µl 8.82x1011  4 weeks p.i. 

     1 170µl 1.00x1012  6 weeks p.i. 

 
(*) represents cmr1 carrier eyes; p.i. - post injection 

 



Table S2. List of primary antibodies used for immunolabeling. 
Antibody Dilution Source 

Rabbit polyclonal anti-GFP 1:1000-1:75000 Courtesy of W.C. Smith (University of Florida) 

Mouse monoclonal anti-GFP 1:1000 MAB3580, Chemicon, Billerica, MA, USA 

Mouse monoclonal anti-Best1 1:400 Ab2182, Abcam, Cambridge, MA, USA 

Mouse monoclonal anti-RPE65 1:500 NB100-355, Novus Biologicals, LLC, Littleton, CO, USA 

Mouse monoclonal anti-Rho 1:1000 MAB5316, Millipore, Billerica, MA, USA 

Rabbit polyclonal anti-hCAR 1:10000 Courtesy of C.M. Craft (University of Southern California) 

Rabbit polyclonal anti-red/green opsin 1:100 AB5405, Millipore, Billerica, MA, USA 

Rabbit polyclonal anti-blue opsin 1:5000 AB5407, Millipore, Billerica, MA, USA 
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